
CS 364
COMPUTATIONAL

BIOLOGY
Sara Mathieson

Haverford College

Outline

■ Limitations of parsimony

■ Likelihood framework for tree inference

■ Bayesian phylogenetics

Limitations of Parsimony

Problems with parsimony

• Impractical (except for special cases – exact solution is
NP-complete).

• Scales linearly with number of characters – going to be a
problem for genomic data!

• Treats all characters the same – but some characters
are more important than others

• Assumes convergent evolution is rare and that all
mutations are equally likely

• Can be inconsistent – converges to the wrong answer
when you have lots of data (long branch attraction)

Long branch attraction

If mutations happen at random, then long branches in the tree will tend to have more
mutations -> they will look more similar -> they will be “attracted” to each other.

A

B C

DTrue phylogeny:
((A,B),(C,D))

A D

B C

Parsimonious tree:
((A,D),(B,C))

More problems with parsimony:

- Mutational “costs” are not represented in terms of measurable quantities.

- Does not use all the information in the data (e.g. does not use information at
non-variable characters).

- No statistical guarantees. No estimate of uncertainty.

A possible solution – Maximum likelihood methods:

- Cast problem in terms of probabilities (e.g. 1% chance that a base mutates in one
generation).

- Uses all information in the data.

- Efficient, [more] consistent, accounts properly for repeat and convergent evolution.

- Can measure uncertainty

Likelihood framework for tree inference

MrBayes (26,000 citations and counting)

X=1 Y=1

A

Simple model: We see two sequences today

What is A?

Either A=0 or A=1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix:

Now we are treating the state at A as the parameter, so look at ℓ A = P data A

ℓ 0 = P X = 1, Y = 1 A = 0 = 𝑃 𝑋 = 1 𝐴 = 0 𝑃 𝑌 = 1 𝐴 = 0 = 0.2 ∗ 0.2 = 0.04

ℓ 1 = P X = 1, Y = 1 A = 1 = 𝑃 𝑋 = 1 𝐴 = 1 𝑃 𝑌 = 1 𝐴 = 1 = 0.9 ∗ 0.9 = 0.81

Evolution on each branch is independent!

Computing likelihoods of tree states

Computing likelihoods of tree states

X=1 Y=0

A

Simple model: We see three sequences today

What are A and B?

A can be 0,1 and B can be 0,1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix:

Now A and B parameters, so look at ℓ A, B = P X, Y, Z A, B = P(X|B)P(Y|B)P(Z|A)

ℓ 0,0 = P 1,0,1 0,0 	=
ℓ 0,1 = P 1,0,1 0,1 =
ℓ 1,0 = P 1,0,1 1,0 =
ℓ 1,1 = P 1,0,1 1,1 =

Z=1

B

Computing likelihoods of tree states

X=1 Y=0

A

Simple model: We see three sequences today

What are A and B?

A can be 0,1 and B can be 0,1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix:

Now A and B parameters, so look at ℓ A, B = P X, Y, Z A, B = P(X|B)P(Y|B)P(Z|A)

ℓ 0,0 = P 1,0,1 0,0 = 𝑝!"𝑝!!𝑝!"=0.2*0.8*0.2=0.032
ℓ 0,1 = P 1,0,1 0,1 = 𝑝""𝑝"!𝑝!"=0.9∗0.1∗0.2=0.018
ℓ 1,0 = P 1,0,1 1,0 = 𝑝!"𝑝!!𝑝""=0.2∗0.8∗0.9=0.144
ℓ 1,1 = P 1,0,1 1,1 = 𝑝""𝑝"!𝑝""=0.9∗0.1∗0.9=0.081

Z=1

B

Two issues we need to address

■ Probability of changing state
should be dependent on the
branch length

■ Solution: think about number of
generations for each branch

■ Need to work towards the posterior
probability, not just likelihood of
data given ancestral states

■ Solution: Need to integrate over all
possibilities for the ancestral
states

Incorporating branch length

X=1

Y=0

A

Z=1

B

• In general, the probability of a mutation will
depend on the branch length

• We can easily calculate this if we assume a
constant mutation rate per unit time*

• But now the optimization problem is even
harder because we have to optimize over the
branch lengths as well as the topology.

* May not be a good assumption

MOLE 2024 Paul O. Lewis

Probabilities: the AND rule

Rolling 2 dice, what is the probability of seeing (simultaneously) a
1 on the first die and a 6 on the second die?

AND

(1/6) (1/6)! = 1/36

Probability of: ancestors, leaves given topology, branch lengths

Probability of: ancestors, leaves given topology, branch lengths

G AG

A
A
v1

v2
v3 v4Pr

�A � pAA(v1)� pAA(v2)� pAG(v3)� pAG(v4)

�i

pij(v)
— Stationary frequencies
— Transition probabilities

=

Wednesday, July 25, 12

Credit: John Huelsenbeck

Probability of: ancestors, leaves given topology, branch lengths

MOLE 2024 Paul O. Lewis

Probabilities: the OR rule

Rolling 1 die, what is the probability of seeing either a 1 or a 6?

OR

(1/6) (1/6)+ = 1/3

Probability of: leaves given topology, branch lengths

Probability of: leaves given topology, branch lengths

Felsenstein’s Algorithm

Felsenstein’s peeling algorithm
• In general, computing likelihoods is time consuming

• Possible to compute them faster with a dynamic programming algorithm

• This is very similar to Sankoff’s algorithm

A C G T

P(node=)

A C G T

P(node=)

A C G T

P(node=)

A C G T

P(node=)

G AG

A
APr

G AG

C
A+ Pr

G AG

G
A+ Pr

G AG

T
A+ Pr

G AG

A
CPr

G AG

C
C+ Pr

G AG

G
C+ Pr

G AG

T
C+ Pr

G AG

A
GPr

G AG

C
G+ Pr

G AG

G
G+ Pr

G AG

T
G+ Pr

G AG

A
TPr

G AG

C
T+ Pr

G AG

G
T+ Pr

G AG

T
T+ Pr

+

+

+

Wednesday, July 25, 12

Credit: John Huelsenbeck

Probability of: leaves given topology, branch lengths

G G A

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.
 J. Mol. Evol. 17:368–376.
Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8:21–28.
Gallager, R. G. 1963. Low-density parity-check codes. MIT Press, Cambridge, Mass.

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

G G A
10 0 0 10 0 0 01 0 0

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Wednesday, July 25, 12 Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

Credit: John Huelsenbeck

Felsenstein’s peeling algorithm

Computing likelihoods of tree topologies

X=1 Y=0 z=1 X=1 Y=0 z=1 X=1Y=0 z=1

Want to calculate P(tree|data)

To do this for each tree we need to sum over all the possible states of the internal nodes

Computing likelihoods of tree topologies

X=1 Y=1

A

Simple model: We see two sequences today

What is A?

Either A=0 or A=1, say P(A=0)= π0, P(A=0)= π1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix:

Now the	probability	is

P(X,Y) = 𝑃(1,1|A=0) π0+P(1,1|A=1) π1
 = 0.04*0.6 + 0.81*0.4
 = 0.348

Prior probability of the state at the root:
π0 = probability root is 0 = 0.6
π1 = probability root is 1 = 0.4

P1
P2

P3 P4

P1
P2

P3 P4

P1
P2

P3 P4

P1
P2

P3 P4

1
0

P[010,00] = Q1 = π0* P00(2)*P00(1)*P01(3)*P00(4)

P[010,10] = Q3 = π1* P10(2)*P10(1)*P01(3)*P00(4)

P[010,01] = Q2 = π0* P00(2)*P01(1)*P11(3)*P10(4)

P[010,11] = Q4 = π1* P10(2)*P11(1)*P11(3)*P10(4)

Computing likelihoods of tree topologies

P(010|topology)=Q1+Q2+Q3+Q4

Computing likelihoods of tree topologies

X=1 Y=0 Z=1 X=1 Y=0 Z=1 X=1Y=0 Z=1

P(010|topology=(X,(Y,Z))) P(010| topology =(Z,(X,Y))) P(010| topology =(Y,(X,Z)))

Different mutation models

A T G C
A Q p p p
T p Q p p
C p p Q p
G p p p Q

A T G C
A Q1 p1 p2 p1
T p1 Q2 p1 p2
C p2 p1 Q3 p1
G p1 p2 p1 Q4

A T G C
A Q1 p1 p2 p3
T p1 Q2 p4 p5
C p2 p4 Q3 p6
G p3 p5 p6 Q4

A T G C
A Q1 p1 p2 p3
T p4 Q2 p5 p6
C p7 p8 Q3 p9
G p10 p11 p12 Q4

Jukes-Cantor Kimura 2-parameter

Tamura-Nei General 12-parameter

https://plewis.github.io/applets/jc-transition-probabilities/

https://plewis.github.io/applets/jc-transition-probabilities/

Finding the maximum likelihood tree

• We can compute the likelihood of a tree, given the data (just like computing
the parsimony score).

• But to find the best tree, we still have to search through the space of all trees
(which there are exponentially many and the problem is NP-hard etc…)

• We can use heuristic methods etc, just as for parsimony.

• But in practice this is only practical for relatively small problems

• So what does maximum likelihood get us? It’s interpretable, it’s easily
extended, and it allows us to use all the statistical approaches that have been
developed around likelihood methods.

• Importantly, gives us a measure of uncertainty.

Tree likelihood worksheet

Ways forward:

1) bootstrap, 2) MCMC

Bootstrap (sampling sites with
replacement)

The Bootstrap
In an 18th century story by Rudolph Erich
Raspe, Baron Munchausen falls to the
bottom of a deep lake.

About to drown, he has the idea to lift
himself up by pulling on his bootstraps

(In the original German version, he pulls
himself up by his hair, left).

Obviously impossible, this story gave its
name to a statistical technique (Efron,
1795) that seems magical, in the sense
that you can get something (estimates of
uncertainty) for nothing!

In general, the bootstrap is an incredibly
useful statistical technique – perhaps one
of the most useful in all of modern
statistics.

Data

Tree
(estimate)

Model

Resampled data Resampled trees

This distribution gives
us an estimate of the
uncertainty in this
estimate

Bootstrapping

The bootstrap: Resampling
• The key point is that as long as we can resample our data

(which we can always do).

• And calculate the thing we want to estimate (which we can
almost always do).

• We can bootstrap anything, and get a sense of how good
our estimate is.

• We do not need to make any assumptions about the
underlying distribution. For example, to apply the central
limit theorem.

Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

G
C
G
G
G

Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GG
CG
G-
GG
GC

Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GGG
CGC
G-G
GGG
GCG

Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GGGAAGCAGG
CGCAATCGCG
G-GAAGCAG-
GGGAAGCCGG
GCGAAGCCGC

How to read bootstrap values for trees

0.9

0.5

A B C D

{B,C,D} clade appeared in 90% of bootstrap
trees

{C,D} appeared in 50%

So the interpretation is that A is probably an
outgroup, but we cannot identify the relationship
between B,C and D.

Majority rule consensus trees

E A C F B D E A C B D F

E A F D B C E A D F B C E C A D F B

How many times each partition is found:

AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABDF | EC 1
ABCE | DF 3

A

E
C B D

F

0.60.6
0.6

Majority consensus tree

Example: Joe Felsenstein

Bootstrap summary

1.Resample columns of character matrix

2.Build tree using resampled character matrix (i.e.
recompute distance matrix and run UPGMA/NJ)

3.Compare and report summary of all the
resampled trees; e.g. support values, likelihood,
consensus trees etc…

Bootstrapping worksheet

0.009

P_urs_EU885814_EU885467_539PUGor

P_cyn_EU885791_EU885432_404PCRuk

P_urs_EU885832_EU885485_561PUGoe

P_pap_EU885808_EU885449_518PPKed

Ancient_Baboon

P_cyn_EU885792_EU885433_151PCMic

P_anu_EU885770_EU885453_550PALum

P_pap_EU885806_EU885447_526PPAss

P_anu_EU885776_EU885459_555PAChi

T_gel_EU885834_EU885487_Tgel

P_anu_EU885778_EU885461_559PACMR

P_urs_EU885825_EU885478_468PULos

P_urs_EU885812_EU885465_567PUKfM

P_anu_EU885784_EU885425_527PASeg

P_kin_EU885797_EU885438_565PKKfN

P_ham_EU885802_EU885443_391PHAfb

P_urs_EU885831_EU885484_543PUDra

P_anu_EU885779_EU885420_448PAKib

P_urs_EU885827_EU885480_472PUHak

P_anu_EU885783_EU885424_349PAMan

P_cyn_EU885795_EU885436_411PCLuS

P_anu_EU885774_EU885457_EY10PAGas

P_cyn_EU885793_EU885434_288PCMu2

P_urs_EU885818_EU885471_425PUPil

P_anu_EU885786_EU885427_353PASwr

P_ham_EU885803_EU885444_301PHASt

P_urs_EU885813_EU885466_501PUNya

P_cyn_EU885788_EU885429_529PCDia

P_urs_EU885828_EU885481_482PUSpr

P_anu_EU885768_EU885451_545PABwa

P_ham_EU885804_EU885445_319PHGer

P_urs_EU885819_EU885472_478PUWat

P_urs_EU885822_EU885475_564PUIta

P_pap_EU885809_EU885462_523PPKed

P_cyn_EU885790_EU885431_537PCAmb

P_ham_EU885801_EU885442_074PHKub

P_pap_EU885810_EU885463_252PPBak

P_anu_EU885782_EU885423_194PAHad
P_anu_EU885781_EU885422_184PAGri

P_urs_EU885820_EU885473_435PUBly

P_anu_EU885771_EU885454_547PAKem

P_cyn_EU885794_EU885435_409PCLuS

P_urs_EU885823_EU885476_558PUOka

P_urs_EU885826_EU885479_560PULub

P_urs_EU885824_EU885477_470PULos

P_anu_EU885773_EU885456_EY01PAGas

P_urs_EU885833_EU885486_463PUHop

P_urs_EU885815_EU885468_540PUGor

P_cyn_EU885789_EU885430_533PCDia

P_urs_EU885817_EU885470_422PUPil

P_cyn_EU885796_EU885437_570PCLua

P_anu_EU885777_EU885460_552PAKur

P_kin_EU885798_EU885439_568PKKas
P_kin_EU885799_EU885440_569PKShi

P_urs_EU885816_EU885469_492PUMor

P_anu_EU885785_EU885426_536PASeg

P_urs_EU885811_EU885464_566PUNka

P_anu_EU885767_EU885450_096PAKoN

P_anu_EU885780_EU885421_512PAsBu

P_anu_EU885772_EU885455_548PASep

P_ham_EU885805_EU885446_414PHBuH

P_urs_EU885830_EU885483_542PUDra

P_anu_EU885775_EU885458_549PAChi

P_cyn_EU885787_EU885428_507PCWeb

P_pap_EU885807_EU885448_556PPNio

P_anu_EU885769_EU885452_546PALum

P_ham_EU885800_EU885441_037PHAbd

P_urs_EU885821_EU885474_563PUIta

P_urs_EU885829_EU885482_541PUDra

93

61

96

100

95

100

Ha Makotoko
Giant's Castle

Goegap

P. ursinus
P. cynocephalus
P. kindae
P. anubis
P. papio
P. hamadryas

B

A

Ha Makotoko
Giant's Castle

Goegap

C????

“An Ancient Baboon Genome Demonstrates Long-Term Population Continuity in Southern Africa”, GBE (2020)

Next time!

