
CS 364 
COMPUTATIONAL 

BIOLOGY
Sara Mathieson

Haverford College



Outline

■ Limitations of parsimony

■ Likelihood framework for tree inference

■ Bayesian phylogenetics



Limitations of Parsimony



Problems with parsimony

• Impractical (except for special cases – exact solution is 
NP-complete). 

• Scales linearly with number of characters – going to be a 
problem for genomic data!

• Treats all characters the same – but some characters 
are more important than others

• Assumes convergent evolution is rare and that all 
mutations are equally likely 

• Can be inconsistent – converges to the wrong answer 
when you have lots of data (long branch attraction)



Long branch attraction

If mutations happen at random, then long branches in the tree will tend to have more 
mutations -> they will look more similar -> they will be “attracted” to each other.  

A

B C

DTrue phylogeny:
((A,B),(C,D))

A D

B C

Parsimonious tree:
((A,D),(B,C)) 



More problems with parsimony: 

- Mutational “costs” are not represented in terms of measurable quantities. 

- Does not use all the information in the data (e.g. does not use information at 
non-variable characters). 

- No statistical guarantees. No estimate of uncertainty.

A possible solution – Maximum likelihood methods: 

- Cast problem in terms of probabilities (e.g. 1% chance that a base mutates in one 
generation).  

- Uses all information in the data. 

- Efficient, [more] consistent, accounts properly for repeat and convergent evolution.

- Can measure uncertainty 



Likelihood framework for tree inference





MrBayes (26,000 citations and counting)







X=1 Y=1

A

Simple model: We see two sequences today

What is A? 

Either A=0 or A=1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix: 

Now we are treating the state at A as the parameter, so look at ℓ A = P data A

ℓ 0 = P X = 1, Y = 1 A = 0 = 𝑃 𝑋 = 1 𝐴 = 0 𝑃 𝑌 = 1 𝐴 = 0 = 0.2 ∗ 0.2 = 0.04

ℓ 1 = P X = 1, Y = 1 A = 1 = 𝑃 𝑋 = 1 𝐴 = 1 𝑃 𝑌 = 1 𝐴 = 1 = 0.9 ∗ 0.9 = 0.81

Evolution on each branch is independent! 

Computing likelihoods of tree states







Computing likelihoods of tree states

X=1 Y=0

A

Simple model: We see three sequences today

What are A and B? 

A can be 0,1 and B can be 0,1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix: 

Now A and B parameters, so look at ℓ A, B = P X, Y, Z A, B = P(X|B)P(Y|B)P(Z|A)

ℓ 0,0 = P 1,0,1 0,0 	=
ℓ 0,1 = P 1,0,1 0,1 =
ℓ 1,0 = P 1,0,1 1,0 =
ℓ 1,1 = P 1,0,1 1,1 =

Z=1

B



Computing likelihoods of tree states

X=1 Y=0

A

Simple model: We see three sequences today

What are A and B? 

A can be 0,1 and B can be 0,1

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix: 

Now A and B parameters, so look at ℓ A, B = P X, Y, Z A, B = P(X|B)P(Y|B)P(Z|A)

ℓ 0,0 = P 1,0,1 0,0 = 𝑝!"𝑝!!𝑝!"=0.2*0.8*0.2=0.032
ℓ 0,1 = P 1,0,1 0,1 = 𝑝""𝑝"!𝑝!"=0.9∗0.1∗0.2=0.018
ℓ 1,0 = P 1,0,1 1,0 = 𝑝!"𝑝!!𝑝""=0.2∗0.8∗0.9=0.144
ℓ 1,1 = P 1,0,1 1,1 = 𝑝""𝑝"!𝑝""=0.9∗0.1∗0.9=0.081

Z=1

B





Two issues we need to address

■ Probability of changing state 
should be dependent on the 
branch length

■ Solution: think about number of 
generations for each branch

■ Need to work towards the posterior 
probability, not just likelihood of 
data given ancestral states

■ Solution: Need to integrate over all 
possibilities for the ancestral 
states



Incorporating branch length

X=1

Y=0

A

Z=1

B

• In general, the probability of a mutation will 
depend on the branch length

• We can easily calculate this if we assume a 
constant mutation rate per unit time*

• But now the optimization problem is even 
harder because we have to optimize over the 
branch lengths as well as the topology. 

* May not be a good assumption



MOLE 2024 Paul O. Lewis

Probabilities: the AND rule

Rolling 2 dice, what is the probability of seeing (simultaneously) a 
1 on the first die and a 6 on the second die? 

AND

(1/6) (1/6)! = 1/36



Probability of: ancestors, leaves given topology, branch lengths



Probability of: ancestors, leaves given topology, branch lengths
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Credit: John Huelsenbeck

Probability of: ancestors, leaves given topology, branch lengths



MOLE 2024 Paul O. Lewis

Probabilities: the OR rule

Rolling 1 die, what is the probability of seeing either a 1 or a 6? 

OR

(1/6) (1/6)+ = 1/3



Probability of: leaves given topology, branch lengths



Probability of: leaves given topology, branch lengths



Felsenstein’s Algorithm



Felsenstein’s peeling algorithm
• In general, computing likelihoods is time consuming 

• Possible to compute them faster with a dynamic programming algorithm

• This is very similar to Sankoff’s algorithm
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G G A

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. 
   J. Mol. Evol. 17:368–376.
Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8:21–28.
Gallager, R. G. 1963. Low-density parity-check codes. MIT Press, Cambridge, Mass.
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Felsenstein’s peeling algorithm



G G A
10 0 0 10 0 0 01 0 0
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Felsenstein’s peeling algorithm
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Credit: John Huelsenbeck

Felsenstein’s peeling algorithm



Computing likelihoods of tree topologies

X=1 Y=0 z=1 X=1 Y=0 z=1 X=1Y=0 z=1

Want to calculate P(tree|data) 

To do this for each tree we need to sum over all the possible states of the internal nodes



Computing likelihoods of tree topologies

X=1 Y=1

A

Simple model: We see two sequences today

What is A? 

Either A=0 or A=1, say P(A=0)= π0, P(A=0)= π1  

0 1

0 0.8 0.2

1 0.1 0.9

Mutation rate matrix: 

Now the	probability	is

P(X,Y) = 𝑃(1,1|A=0) π0+P(1,1|A=1) π1
           = 0.04*0.6 + 0.81*0.4
           = 0.348

Prior probability of the state at the root: 
π0 = probability root is 0   = 0.6
π1 = probability root is 1   = 0.4



P1
P2

P3 P4

P1
P2

P3 P4

P1
P2

P3 P4

P1
P2

P3 P4

1
0

P[010,00] = Q1 = π0* P00(2)*P00(1)*P01(3)*P00(4)

P[010,10] = Q3 = π1* P10(2)*P10(1)*P01(3)*P00(4)

P[010,01] = Q2 = π0* P00(2)*P01(1)*P11(3)*P10(4)

P[010,11] = Q4 = π1* P10(2)*P11(1)*P11(3)*P10(4)

Computing likelihoods of tree topologies

P(010|topology)=Q1+Q2+Q3+Q4



Computing likelihoods of tree topologies

X=1 Y=0 Z=1 X=1 Y=0 Z=1 X=1Y=0 Z=1

P(010|topology=(X,(Y,Z))) P(010| topology =(Z,(X,Y))) P(010| topology =(Y,(X,Z)))



Different mutation models 

A  T  G   C
A Q  p   p p 
T p  Q  p p
C p  p  Q p
G p  p  p Q

A   T  G  C
A Q1 p1 p2 p1 
T p1 Q2 p1 p2
C p2 p1 Q3 p1
G p1 p2 p1 Q4

A   T  G  C
A Q1 p1 p2 p3 
T p1 Q2 p4 p5
C p2 p4 Q3 p6
G p3 p5 p6 Q4

A   T  G  C
A Q1 p1 p2 p3 
T p4 Q2 p5 p6
C p7 p8 Q3 p9
G p10 p11 p12 Q4

Jukes-Cantor Kimura 2-parameter

Tamura-Nei General 12-parameter

https://plewis.github.io/applets/jc-transition-probabilities/

https://plewis.github.io/applets/jc-transition-probabilities/


Finding the maximum likelihood tree

• We can compute the likelihood of a tree, given the data (just like computing 
the parsimony score). 

• But to find the best tree, we still have to search through the space of all trees 
(which there are exponentially many and the problem is NP-hard etc…) 

• We can use heuristic methods etc, just as for parsimony. 

• But in practice this is only practical for relatively small problems

• So what does maximum likelihood get us? It’s interpretable, it’s easily 
extended, and it allows us to use all the statistical approaches that have been 
developed around likelihood methods.  

• Importantly, gives us a measure of uncertainty. 



Tree likelihood worksheet





Ways forward:

1) bootstrap, 2) MCMC



Bootstrap (sampling sites with 
replacement)



The Bootstrap
In an 18th century story by Rudolph Erich 
Raspe, Baron Munchausen falls to the 
bottom of a deep lake.

About to drown, he has the idea to lift 
himself up by pulling on his bootstraps

(In the original German version, he pulls 
himself up by his hair, left). 

Obviously impossible, this story gave its 
name to a statistical technique (Efron, 
1795) that seems magical, in the sense 
that you can get something (estimates of 
uncertainty) for nothing!  

In general, the bootstrap is an incredibly 
useful statistical technique – perhaps one 
of the most useful in all of modern 
statistics. 



Data

Tree
(estimate)

Model

Resampled data Resampled trees

This distribution gives 
us an estimate of the 
uncertainty in this 
estimate 

Bootstrapping



The bootstrap: Resampling
• The key point is that as long as we can resample our data 

(which we can always do).

• And calculate the thing we want to estimate (which we can 
almost always do).

• We can bootstrap anything, and get a sense of how good 
our estimate is.

• We do not need to make any assumptions about the 
underlying distribution. For example, to apply the central 
limit theorem. 



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

G
C
G
G
G



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GG
CG
G-
GG
GC



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GGG
CGC
G-G
GGG
GCG



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG

GGGAAGCAGG
CGCAATCGCG
G-GAAGCAG-
GGGAAGCCGG
GCGAAGCCGC





How to read bootstrap values for trees

0.9

0.5

A B C D

{B,C,D} clade appeared in 90% of bootstrap 
trees

{C,D} appeared in 50%

So the interpretation is that A is probably an 
outgroup, but we cannot identify the relationship 
between B,C and D. 



Majority rule consensus trees

E   A  C   F   B   D E   A  C   B   D   F

E   A  F   D   B   C E   A  D   F   B   C E   C  A   D   F   B

How many times each partition is found:
 
AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABDF | EC 1
ABCE | DF 3

A

E
C B D

F

0.60.6
0.6

Majority consensus tree

Example: Joe Felsenstein



Bootstrap summary

1.Resample columns of character matrix

2.Build tree using resampled character matrix (i.e. 
recompute distance matrix and run UPGMA/NJ)

3.Compare and report summary of all the 
resampled trees; e.g. support values, likelihood, 
consensus trees etc… 



Bootstrapping worksheet
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“An Ancient Baboon Genome Demonstrates Long-Term Population Continuity in Southern Africa”, GBE (2020)

Next time!


