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Limitations of Parsimony




Problems with parsimony

Impractical (except for special cases - exact solution is
NP-complete).

Scales linearly with number of characters - going to be a
problem for genomic data!

Treats all characters the same - but some characters
are more important than others

Assumes convergent evolution is rare and that all
mutations are equally likely

Can be inconsistent - converges to the wrong answer
when you have lots of data (long branch attraction)




Long branch attraction

If mutations happen at random, then long branches in the tree will tend to have more
mutations -> they will look more similar -> they will be “attracted” to each other.
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True phylogeny: D
((A,B),(C,D))
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Parsimonious tree:
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More problems with parsimony:

- Mutational “costs” are not represented in terms of measurable quantities.

- Does not use all the information in the data (e.g. does not use information at
non-variable characters).

- No statistical guarantees. No estimate of uncertainty.

A possible solution - Maximum likelihood methods:

- Cast problem in terms of probabilities (e.g. 1% chance that a base mutates in one
generation).

- Uses all information in the data.
- Efficient, [more] consistent, accounts properly for repeat and convergent evolution.

- Can measure uncertainty



Likelihood framework for tree inference




Likelihood tells you how surprised
you should be at the observed data
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Likelihood of a single vertex

First 32 nucleotides of the n-globin gene of gorilla:

©® GAAGTCCTTGAGAAATAAACTGCACACACTGG

\\\\ /

L =Pr(G) Pr(A) Pr(A) Pr(G) Pr(T) Pr(G)

b= e AT N e T ve
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L=ry oo Tp

log L = 12log(mwa) + 7Tlog(mc) + Tlog(wg) + 6log(mr)
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Computing likelihoods of tree states

A
Simple model: We see two sequences today
What is A?
Mutation rate matrix:
O 08 0.2
1 01 0.9
X=1 Y=1

Either A=0 or A=1

Now we are treating the state at A as the parameter, so look at £(A) = P(data|A)
2(0)=PX=1Y=1A=0)=PX =1|1A=0P(Y =1|A=0) =0.2%0.2 =0.04
(1) =PX=1Y=1A=1)=PX=1|A=1)P(Y =1|A=1) =09%0.9 = 0.81

Evolution on each branch is independent!
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Computing likelihoods of tree states

A
Simple model: We see three sequences today
B
What are A and B?
Mutation rate matrix:
O 08 0.2
1 0.1 0.9
O
X=1 Y=0 Z=1 A can be 0,1 and B can be 0,1

Now A and B parameters, so look at (A, B) = P(X, Y, Z|A,B) = P(X|B)P(Y|B)P(Z|A)

£(0,0) = P(1,0,1]0,0) =
£(0,1) = P(1,0,1]0,1) =
£(1,0) = P(1,0,1]1,0) =
£(1,1) = P(1,0,1|1,1) =



Computing likelihoods of tree states

A
Simple model: We see three sequences today
B
What are A and B?
Mutation rate matrix:
O 08 0.2
1 0.1 0.9
O
X=1 Y=0 Z=1 A can be 0,1 and B can be 0,1

Now A and B parameters, so look at (A, B) = P(X, Y, Z|A,B) = P(X|B)P(Y|B)P(Z|A)

£(0,0) = P(1,0,1/0,0) = po1PeoPo1 =0.270.8%0.2=0.032
£(0,1) = P(1,0,1|0,1) = py1P10Per =0.9%0.1%0.2=0.018
£(1,0) = P(1,0,1]1,0) = po1Poep11 =0.2%0.8%0.9=0.144
2(1,1) = P(1,0,1|1,1) = py1p1oP1q =0.9%0.1%0.9=0.081






Two Issues we need to address

m Probability of changing state m Need to work towards the posterior
should be dependent on the probability, not just likelihood of
branch length data given ancestral states

m Solution: think about number of m Solution: Need to integrate over all
generations for each branch possibilities for the ancestral

states



Incorporating branch length

A

* In general, the probability of a mutation will
depend on the branch length

 We can easily calculate this if we assume a
constant mutation rate per unit time*

* But now the optimization problem is even

harder because we have to optimize over the
branch lengths as well as the topology.

* May not be a good assumption




Probabilities: the AND rule

Rolling 2 dice, what is the probability of seeing (simultaneously) a
| on the first die and a 6 on the second die!

(1/6) x (e — a6
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Proba bility Of: ancestors, leaves given topology, branch lengths

2 & < One use of the AND rule

In phylogenetics Is to
combine probabllities

i (v?’) pacC (714)

assoclated with individual

paa(vi) branches to produce the

/ paa(v2) overall probability of the

G data for one site.
probability of probability of

A at tip given IS starting with A
A at root at the root




Proba bility Of: ancestors, leaves given topology, branch lengths

A A &

One use of the AND rule
In phylogenetics Is to
combine probabllities

assoclated with individual

@ branches to produce the

paa(v2) overall probability of the
data for one site.

e (v?’) pacC (714)

paa(vi)

/

probability of probability of
A at tip given U e starting with A

A at root at the root

Pr(A,A,C,A,A) =14 Paa(v1) Paa(v2) paa(vs) pac(va)
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Probability Of: ancestors, leaves given topology, branch lengths

Pr\/
i,

A X Paa(v1) X paa(va) X pag(v3) X pac(vy)

Ty — Stationary frequencies

pij(v) — Transition probabilities

Credit: John Huelsenbeck



Probabillities: the OR rule

Rolling | die, what Is the probability of seeing eithera | ora 6/

0 o

(1/6) . e~ e
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Proba bility Of: Ieaves given topology, branch lengths

AND rule used to compute probability
A A @ of the observed data for each
combination of ancestral states.

PANV3) /pac(vs)

paa(vn) P99 @

Daa(vs)

P99 ©

OR rule used to combine over all |6
combinations of ancestral states.

TA




Proba bility Of: Ieaves given topology, branch lengths

AND rule used to compute probability
A A @ of the observed data for each
combination of ancestral states.

PANV3) /pac(vs)

paa(v) P09 ©

pAA vz

P99 6

OR rule used to combine over all |6
combinations of ancestral states.

Pr(A,A,C) = Pr(A,A,CAA)+ Pr(AA,CAC)+.+ Pr(AA,CTT)

MOLE 2024 Paul O. Lewis
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Felsenstein’s Algorithm




Felsenstein’s peeling algorithm

* In general, computing likelihoods is time consuming
* Possible to compute them faster with a dynamic programming algorithm

e This is very similar to Sankoff’s algorithm

ACGT

P(node=)

P(node=)

>¢
O

P(node=)




Proba bility Of: Ieaves given topology, branch lengths
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Credit: John Huelsenbeck



Felsenstein’s peeling algorithm

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.
J. Mol. Evol. 17:368-376.

Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8:21-28.

Gallager, R. G. 1963. Low-density parity-check codes. MIT Press, Cambridge, Mass.
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm

Wednesday, July 25, 12

Credit: John Huelsenbeck



Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm

Wednesday, July 25, 12

Credit: John Huelsenbeck



Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm
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Felsenstein’s peeling algorithm

N

lowe = TA X B + T X ™ + e X LE" + 1T X L7

“Wednesday, July 25, 12 Credit: John Huelsenbeck



Computing likelihoods of tree topologies

Want to calculate P(tree|data)

To do this for each tree we need to sum over all the possible states of the internal nodes




Computing likelihoods of tree topologies

A
Simple model: We see two sequences today
What is A?
Mutation rate matrix:
O 0.8 0.2
1 01 0.9
X=1 Y=1 " Either A=0 or A=1, say P(A=0)= 11y, P(A=0)= 11,
Now the probability is
Prior probability of the state at the root:
P(X,Y) = P(1,1|A=0) mo+P(1,1|A=1) my Mo = probability rootis 0 = 0.6
=0.04*0.6 + 0.81*0.4 1M, = probability rootis 1 = 0.4

=0.348




Computing likelihoods of tree topologies

P[010,00] = Q1 = 1™ Poo(2)*Poo(1)*Po1(3)*Poo(4)

P[010,01] = Q2 = 1p* Poo(2)*Po1(1)*P11(3)*P10(4)

P[010,10] = Q3 = 11 * P10(2)*P10(1)*P0o1(3)*Poo(4)

P[010,11] = Q4 = m1* P10(2)*P11(1)*P14(3)*P10(4)

P(010 |topology)=Q1+Q2+Q3+Q4




Computing likelihoods of tree topologies

P(010[topology=(X,(Y,Z))) P(010| topology =(Z,(X,Y))) P(010| topology =(Y,(X,2)))




Different mutation models

A T G C A T G C
AIQ p p P AlQ; P1 P2 P
Tip QO p P Tipr Q P11 P2
Clp p O P Clpz P11 O3 B
Glp p P Q Glp1 P2 P11 Q4

Jukes-Cantor Kimura 2-parameter

A T G C A T G C
AlQ; P11 P2 Ps3 AlQr P11 P2 Ps3
Tipr QO Ps Ps Tips QO Ps DPe
Clpz Ps Q3 DPg Clp7 Ps Q3 Pg
Glps Ps Ps Qs G|Pio P11 Pi2 Q4

Tamura-Nei General 12-parameter



https://plewis.github.io/applets/jc-transition-probabilities/

Finding the maximum likelihood tree

We can compute the likelihood of a tree, given the data (just like computing
the parsimony score).

But to find the best tree, we still have to search through the space of all trees
(which there are exponentially many and the problem is NP-hard etc...)

We can use heuristic methods etc, just as for parsimony.

But in practice this is only practical for relatively small problems

So what does maximum likelihood get us? It's interpretable, it’s easily
extended, and it allows us to use all the statistical approaches that have been

developed around likelihood methods.

Importantly, gives us a measure of uncertainty.



Tree likelihood worksheet







Ways forward:

1) bootstrap, 2) MCMC




Bootstrap (sampling sites with
replacement)




The Bootstrap

In an 18t century story by Rudolph Erich
Raspe, Baron Munchausen falls to the
bottom of a deep lake.

About to drown, he has the idea to lift
himself up by pulling on his bootstraps

(In the original German version, he pulls
himself up by his hair, left).

Obviously impossible, this story gave its
name to a statistical technique (Efron,
1795) that seems magical, in the sense
that you can get something (estimates of
uncertainty) for nothing!

In general, the bootstrap is an incredibly
useful statistical technique - perhaps one
of the most useful in all of modern
statistics.




Bootstrapping

This distribution gives
us an estimate of the
uncertainty in this

estimate

Resampled data Resampled trees




The bootstrap: Resampling

The key point is that as long as we can resample our data
(which we can always do).

And calculate the thing we want to estimate (which we can
almost always do).

We can bootstrap anything, and get a sense of how good
our estimate is.

We do not need to make any assumptions about the
underlying distribution. For example, to apply the central
limit theorem.



Resampling molecular data

ACTGTGAGTG
ACTGGTGCTG
ACT-TGAGTG
ACTGTGCGTG
ACTCTGCGCG




Resampling molecular data

ACTGTGAGI'G G
ACTGGTQCI'G C
ACT-TGAGII'G G
ACTGTGQGI'G G
ACTCTGQGLG G




Resampling molecular data

AC GAGTG GG
AC TGCTG CG
AC GAGTG G-
AC GCGTG GG

AC GCGCG GC




Resampling molecular data

ACTGTGAQILG GGG
ACTGGTQCIL'G CGC
ACT-TGAQILG G-G
ACTGTGEIL'G GGG
ACTCTGQGLCG GCG




Resampling molecular data

ACTGTGAGTG GGGAAGCAGG
ACTGGTGCTG CGCAATCGCG
ACT-TGAGTG G-GAAGCAG-
ACTGTGCGTG GGGAAGCCGG

ACTCTGCGCG GCGAAGCCGC




Bootstrap | 2 3 4 5 ¢ 7 8 original data
support . G GEG [ A C 3
sites sampled 2 B eon il oAl >_<
with tBAGTCACGG 4
replacement WA ATCGCGG
X . X X

8
| GG C G G C GG 1 2
2 GA CAGTA AG >—<
3 TGCGAGGA 3 4
4 T ACAGGAG
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How to read bootstrap values for trees

{B,C,D} clade appeared in 90% of bootstrap
trees

0.9 {C,D} appeared in 50%

So the interpretation is that A is probably an
outgroup, but we cannot identify the relationship

0.5 between B,C and D.




Majority rule consensus trees

EACFBD EACDBUDF

EAFDBCEADFBC CECADTFB

How many times each partition is found:

AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2 A
ABDF | EC 1

ABCE | DF 3

Majority consensus tree

C B

0.6 0.6
0.6

Example: Joe Felsenstein



Bootstrap summary

1.Resample columns of character matrix

2.Build tree using resampled character matrix (i.e.
recompute distance matrix and run UPGMA/NJ)

3.Compare and report summary of all the
resampled trees; e.g. support values, likelihood,
consensus trees etc...




Bootstrapping worksheet

Next ’t'\me"

:( “"K(
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P. anubis
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P. hamadryas

.3, \\w/ 7\

Y JJJ’

P. cynocephalus
P. kindae

P. ursinus

“An Ancient Baboon Genome Demonstrates Long-Term Population Continuity in Southern Africa”, GBE (2020)



