Neighbor-Joining and Tree Walks

We are given $\mathcal{X} = \{A, B, C, D\}$ and the dissimilarity map δ on \mathcal{X} below.

δ	A	В	С	D
А	0	10	7	12
В		0	9	5
\mathbf{C}			0	10
D				0

The two trees below have the same topology and edge weights (isomorphic), but different "walks" around the tree result in different distances with respect to the original map δ . A walk around the tree starts at a given vertex v and visits every leaf, following the "outside" of the topology and finally returning to v. For the two trees below, compute the length of a tree walk that starts and ends at vertex A.

Extra practice: run the Neighbor-Joining algorithm on δ to obtain a tree topology and edge weights.