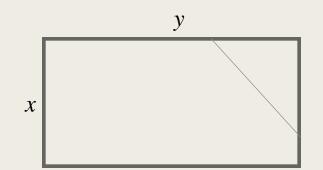
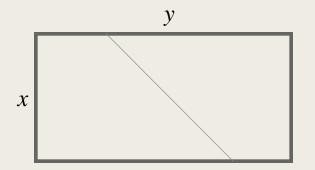
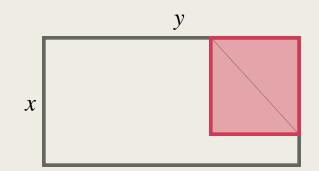
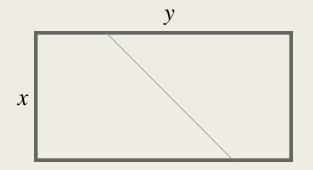
CS 364 COMPUTATIONAL BIOLOGY

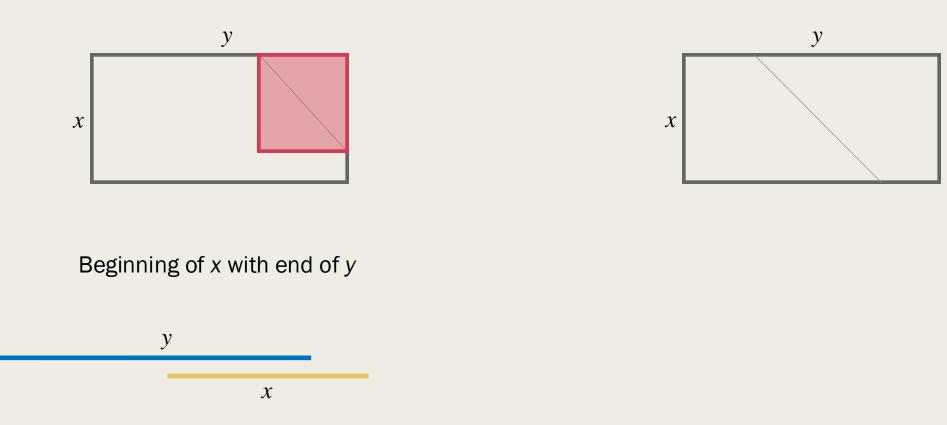
Sara Mathieson Haverford College

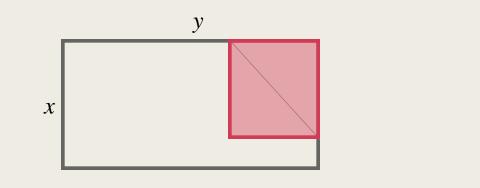


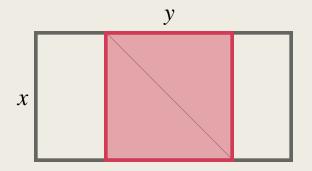

Pairwise alignment variations

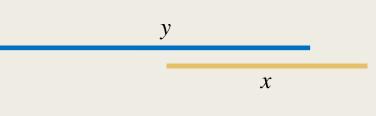

Multiple sequence alignment

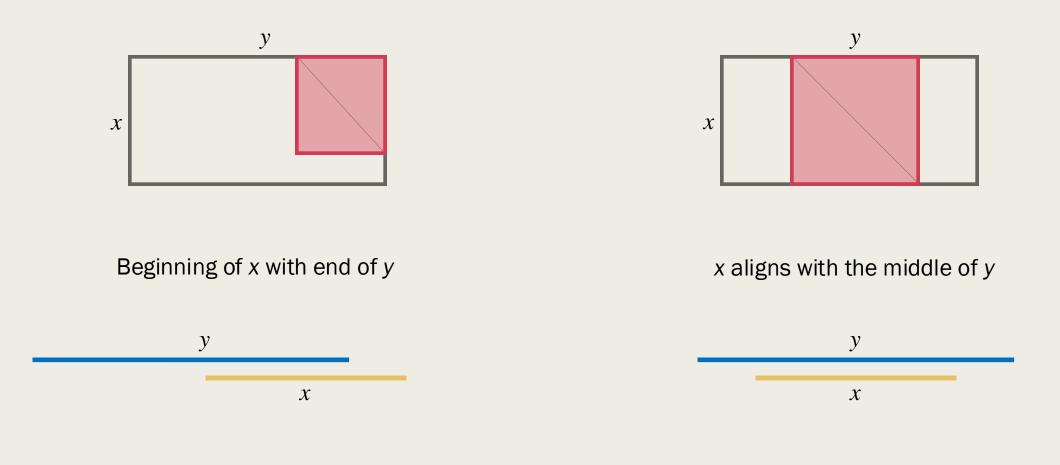

Introduction to phylogenetics

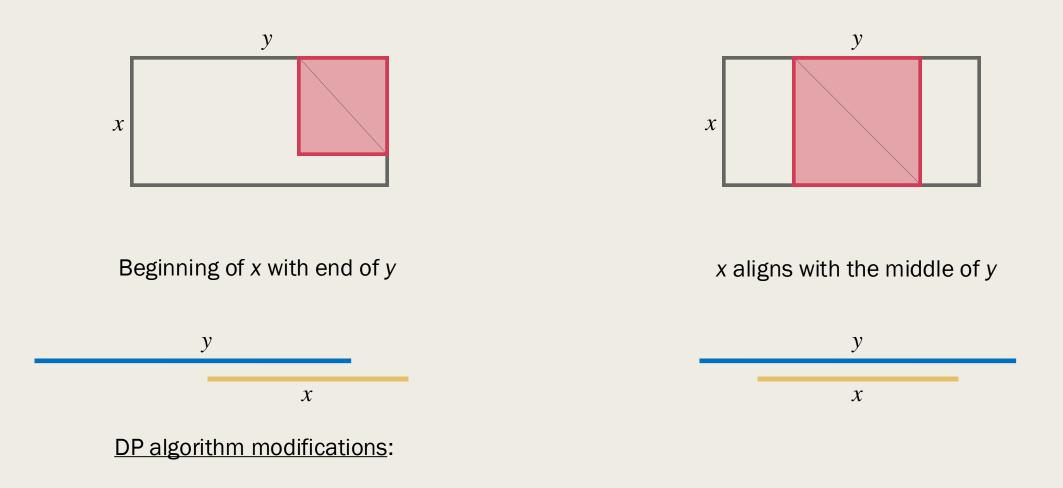

Local alignment variations

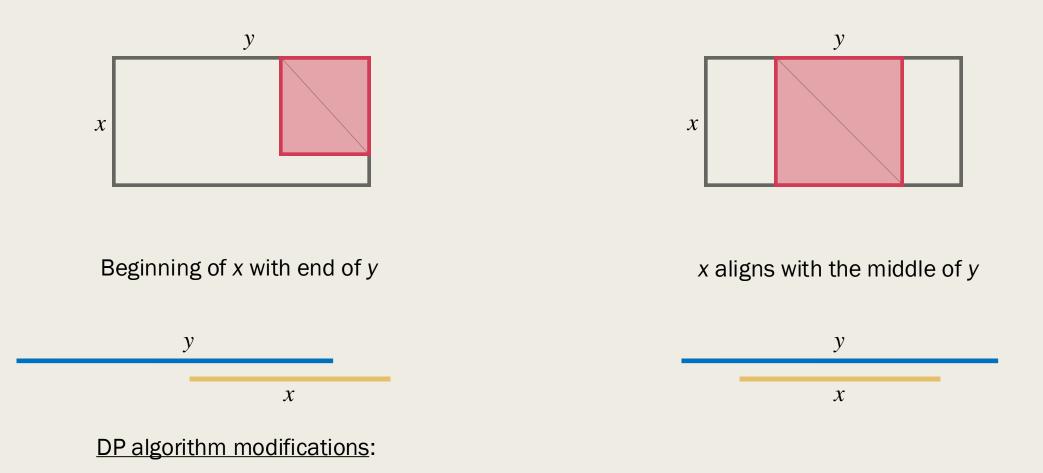




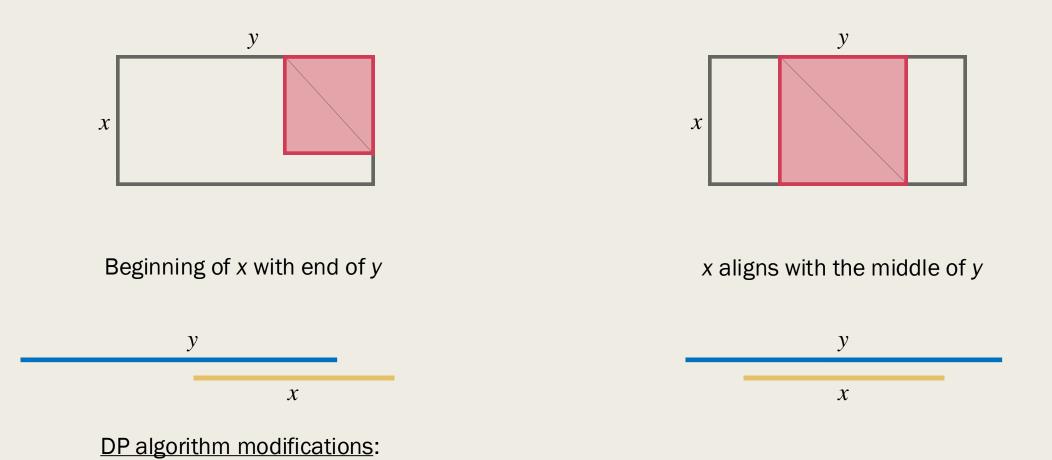


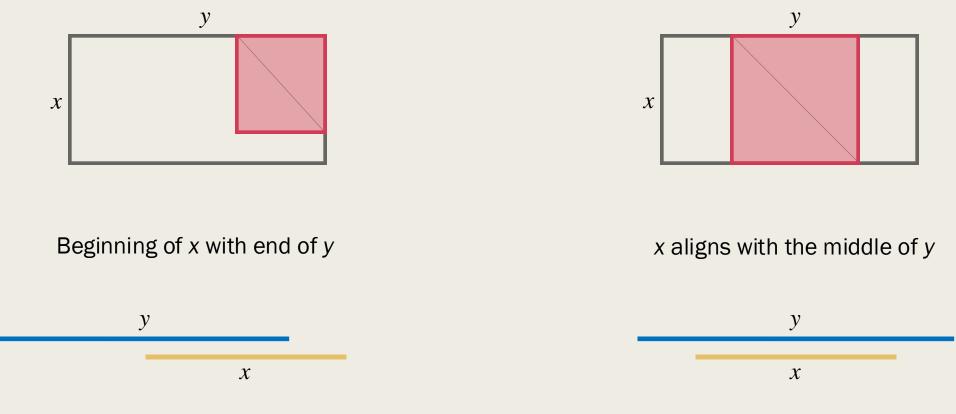






Beginning of *x* with end of *y*





1) Initialization: Oth row and Oth column with O's to not penalize leading/trailing gaps

Initialization: Oth row and Oth column with O's to not penalize leading/trailing gaps
Recursion: to fill in the rest of the table, use global alignment (i.e. don't restart at O)

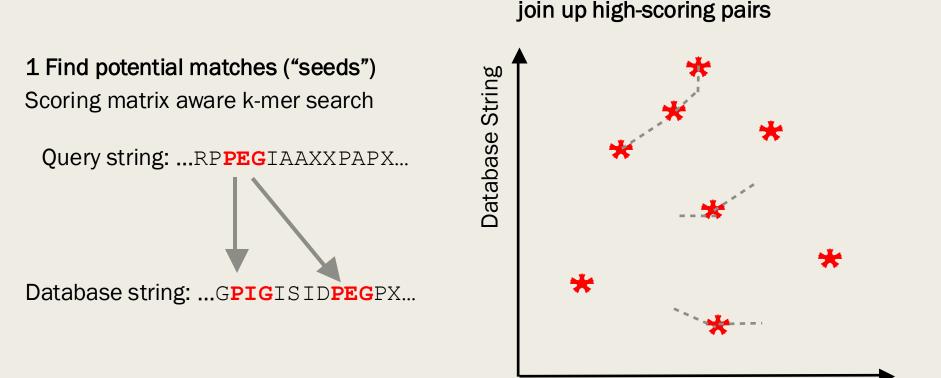
DP algorithm modifications:

- **1)** Initialization: Oth row and Oth column with O's to not penalize leading/trailing gaps
- 2) Recursion: to fill in the rest of the table, use global alignment (i.e. don't restart at 0)
- 3) Traceback: start at the maximum value along the last row or last column

Approximate local alignment: BLAST

I sequenced something – what is it?

Want to compare with all the sequences in published databases


Smith-Waterman far too slow ($O(n^2)$ time and space)

So in practice, often use heuristic (approximate) methods

BLAST (Basic Local Alignment Search Tool) https://blast.ncbi.nlm.nih.gov/Blast.cgi

"Basic local alignment search tool." Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. *J. Mol. Biol.* **215**, 403–410 (1990). 12th most cited scientific paper of all time (as of 2014).

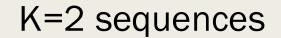
Approximate local alignment: BLAST

Query String

Not guaranteed to find the optimal alignment But in practice it is very good! Report the "E-value": Expected number of matches we would see by chance

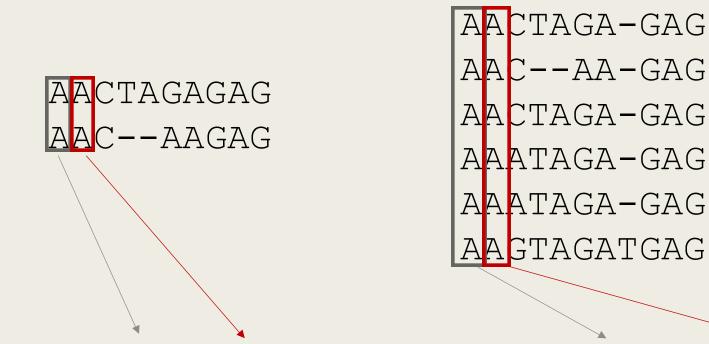
2 Extend matches around seed and

Affine (non-linear) gaps


UBL. AACGTG = 0 + e.(l-1) l=L $\delta(\ell)$ $\chi(4) = -3 + (-1) \cdot 3$ Thength gap gap of open extension gap (i.e. -3) (i.e. -1) -6 0 M m(x,y)m(x) P

Multiple Sequence Alignment

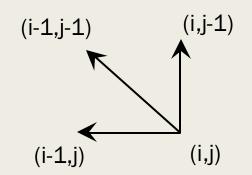
From pairwise to multiple alignment


AACTAGAGAG AAC--AAGAG

- AACTAGA-GAG
- AAC--AA-GAG
- AACTAGA-GAG
- AAATAGA-GAG
- AAATAGA-GAG
- AAGTAGATGAG

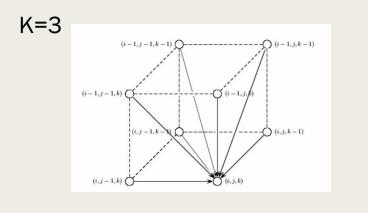
K=6 sequences

How to score multiple alignments

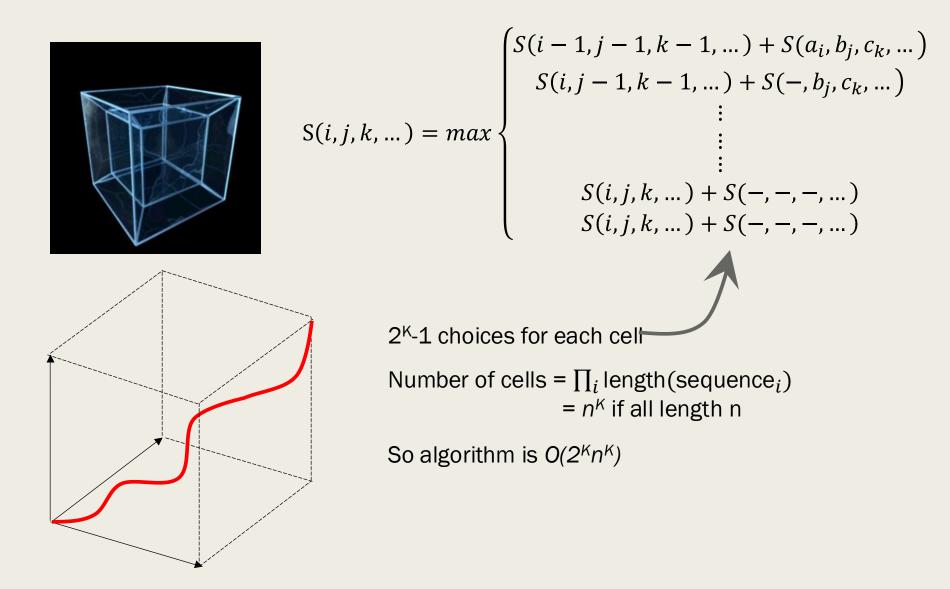

Score = m(A,A)+m(A,A)+...

Score = S(column 1)+S(column 2)+...

UBL Sum of pairs. S(column i) = $\sum m(X_i, Y_i)$ K=k $\binom{K}{2} = \frac{6.5}{2} = 15$ $match = \frac{5}{2} + 1.5$ gap_{gap} gap_{gap} gap_{gap} 3 - 3 - 8 + 0 = -8 $m(x_{i},-)=g$ m(-,-)=0G


K-dimensional dynamic programming

K=2


sequences $a=a_1a_2a_3...$ $b=b_1b_2b_3...$

$$S(i,j) = max \begin{cases} S(i-1,j-1) + S(a_i,b_j) \\ S(i-1,j) + S(a_i,-) \\ S(i,j-1) + S(-,b_j) \end{cases}$$

$$S(i, j, k) = max \begin{cases} S(i - 1, j - 1, k - 1) + S(a_i, b_j, c_k) \\ S(i, j - 1, k - 1) + S(-, b_j, c_k) \\ S(i - 1, j, k - 1) + S(a_i, -, c_k) \\ S(i - 1, j - 1, k) + S(a_i, b_j, -) \\ S(i, j, k - 1) + S(-, -, c_k) \\ S(i, j - 1, k) + S(-, b_j, -) \\ S(i - 1, j, k) + S(a_i, -, -) \end{cases}$$

K-dimensional dynamic programming

UBL $\frac{5}{7} = \frac{1}{12} \frac{1}{12}$ 7=5 K=3, # entries in DP table $= len(x^{(1)}) \cdot len(x^{(2)}) \cdot ... len(x^{(k)})$ $= \frac{N}{k}$ Overall=> O(KzK) 7 9ap 91/2 Segis

K-dimensional dynamic programming

Assume you have some sequences that are n=50 characters long, and that pairwise alignment of K=2 such sequences takes one second on your computer.

Then alignment of K=4 sequences takes $0.0001^{(2n)}$ = 10^{4} s ~3 hours

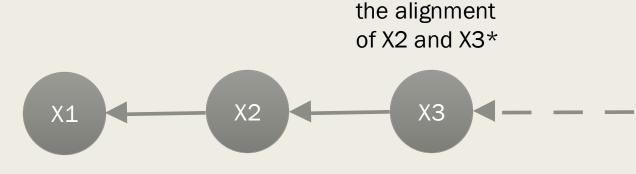
Suppose you had unlimited memory and you were willing to wait until the sun burns out and turns into a red dwarf in 5 billion years, how many sequences could you align?

Progressive alignment

Iterative alignment

Idea: align sequences to each other in some order, so we only ever have to solve pairwise problems

X1: AACTAGA-GAG


X2: ATC--AA-GAG

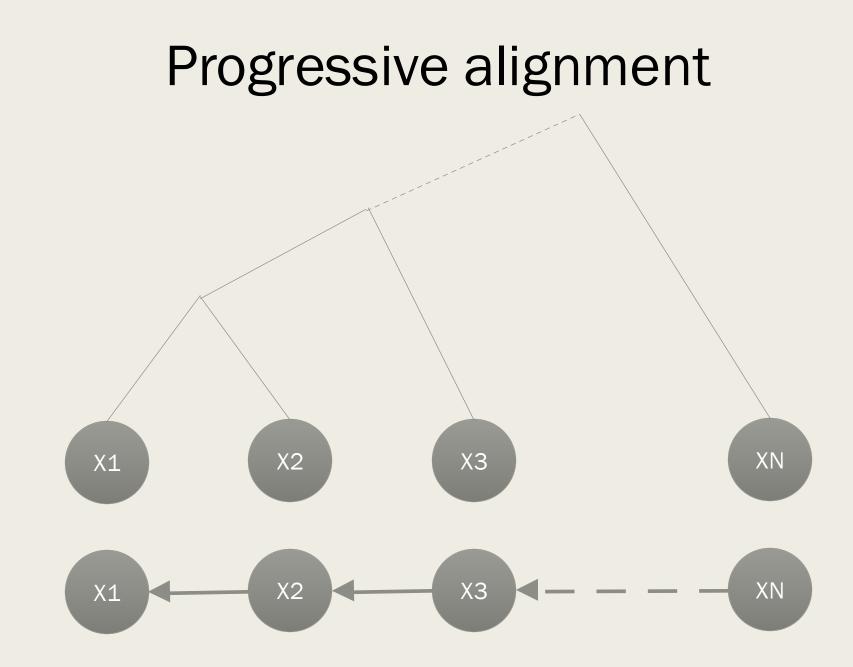
X3: AACTAGA-GAG

2) Align X3 to

AACTAGA-GAG ATC--AA-GAG AACTAGA-GAG AAATAGA-GAG AAATAGA-GAG AAGTAGATGAG

...

K) etc...



*How to align a sequence to an alignment?

X1: AACTAGA-GAG

X2: ATC--AA-GAG

1) Align X2 to X1

Key idea: Align most similar sequences first

We want to use the multiple alignment to reconstruct the tree

But we need to know the tree to get the right multiple alignment

Clustal-W: multiple sequence alignment algorithm

■ 75,000 citations (2024)

JOURNAL ARTICLE

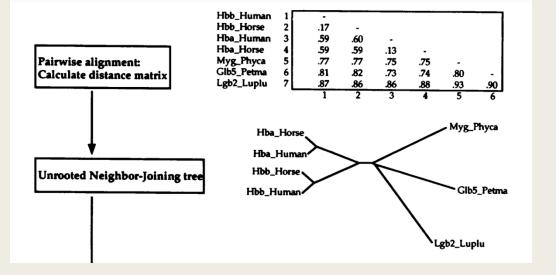
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice a

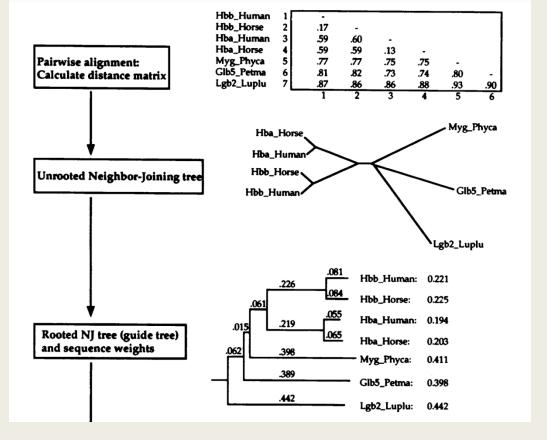
Julie D. Thompson, Desmond G. Higgins, Toby J. Gibson 🖾 👘 Author Notes

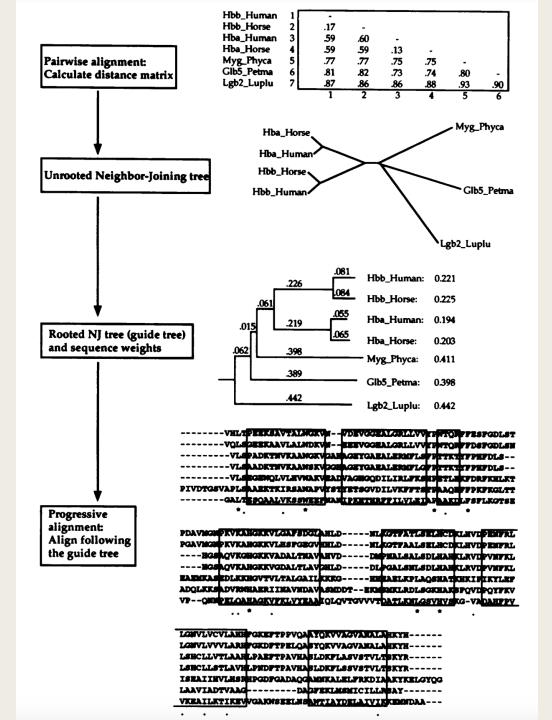
Nucleic Acids Research, Volume 22, Issue 22, 11 November 1994, Pages 4673–4680,

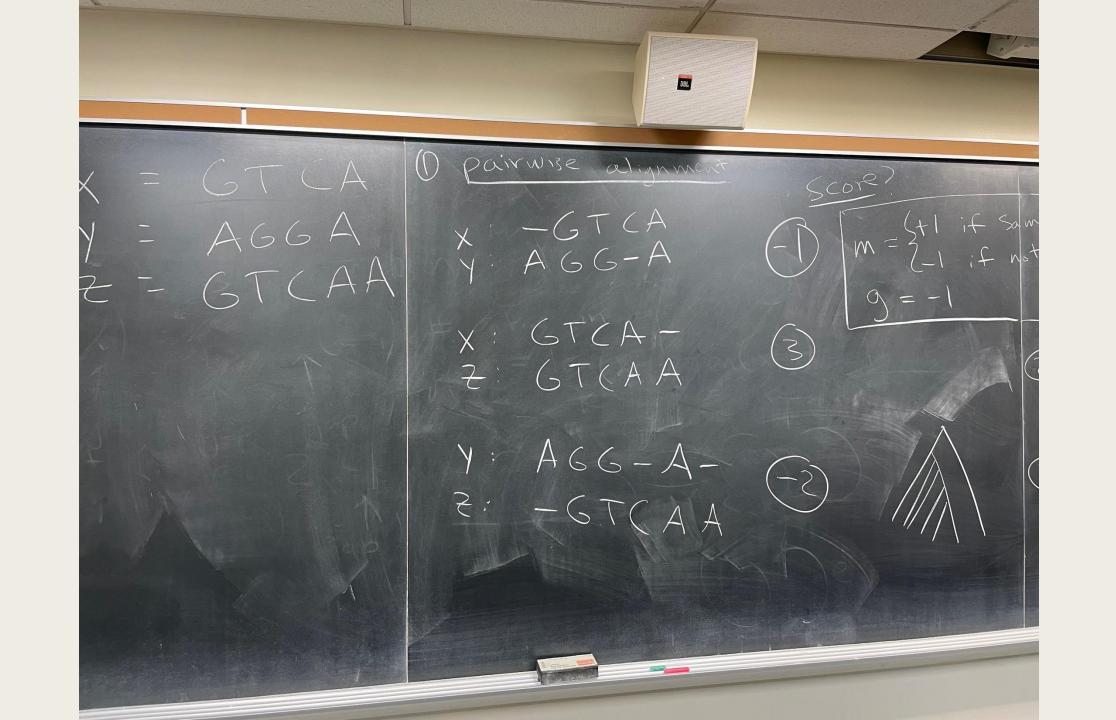
https://doi.org/10.1093/nar/22.22.4673

Published: 11 November 1994 Article history •


Clustal-W: multiple sequence alignment algorithm

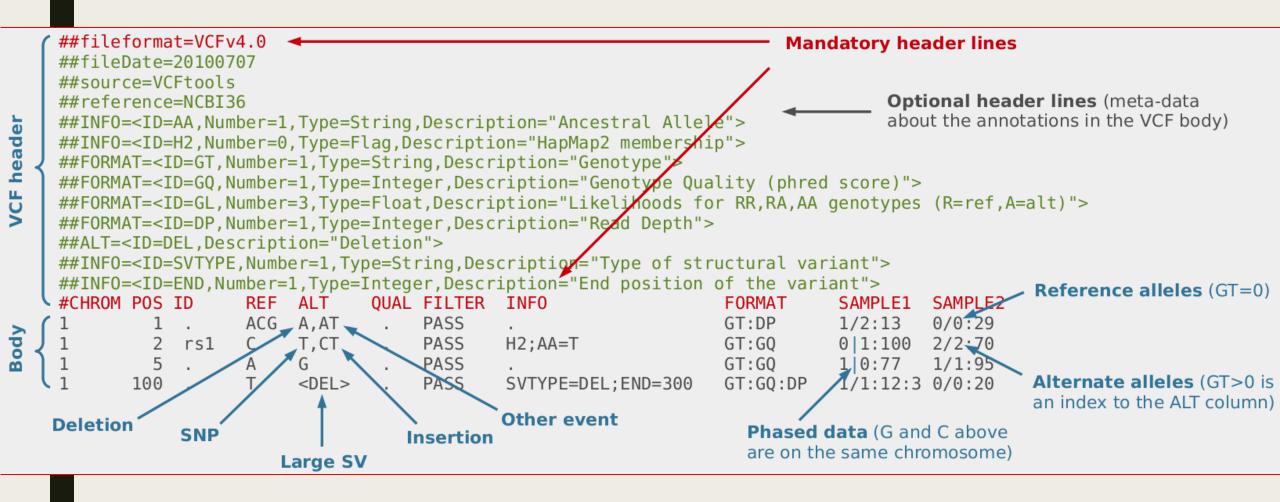

Compute all possible pairwise alignments, use to create a pairwise distance matrix between the strings


Use the pairwise distance matrix to create a UPGMA or NJ tree graph (next week!)


Use the tree graph to iteratively merge pairwise alignments of nodes in the tree (which may be leaves or ancestral nodes). Start with most similar nodes first

Hbb_Horse Hba_Human	2	.17	-				
Hha Human	-						
inva_numan	3	.59	.60	-			
Hba_Horse	4	.59	.59	.13	-		
Myg_Phyca	5	.77	.77	.75	.75	-	
Glb5_Petma	6	.81	.82	.73	.74	.80	-
Lgb2_Luplu	7	.87	.86	.86	.88	.93	.90
	_	1	2	3	4	5	6
	Myg_Phyca Glb5_Petma	Myg_Phyca 5 Glb5_Petma 6	Myg_Phyca 5 .77 Glb5_Petma 6 .81	Myg_Phyca 5 .77 .77 Glb5_Petma 6 .81 .82	Myg_Phyca 5 .77 .77 .75 Glb5_Petma 6 .81 .82 .73	Myg_Phyca 5 .77 .77 .75 .75 Glb5_Petma 6 .81 .82 .73 .74	Myg_Phyca 5 .77 .77 .75 .75 . Glb5_Petma 6 .81 .82 .73 .74 .80

Scort ... (J) Progressive alignmen Starting From n Sa right trangular 3 nst 2 XZ 66 (umooted) create a tree $\zeta \zeta$ - X root A root 7 tree ---

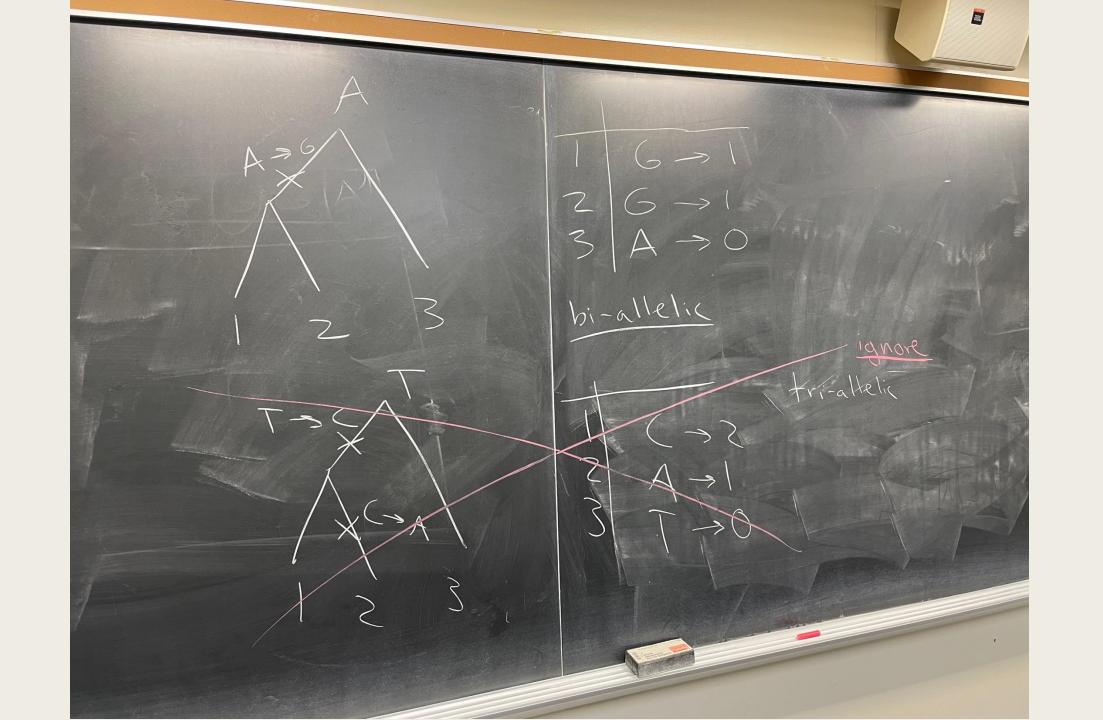

Progressive alignment Starting From most similar seas Jr Jord \mathcal{M} m(CC, G) =XZ 66 m(-AC(A 56

UBL painwise avera (C, G) = -2+m(M(CC,G) =ancestor of X42 2 m(-A,A) =GG| End goal A - bAA è

ancestor of all 51CAancestor of X42 x lost Kadd A Present day data AGGA 2 TCA GTCAA

Begin: using variation to reconstruct evolutionary events


VCF file format


VCF file format

	CHROM	POS	ID	REF		QUA		LTER INF								L9005 NA1
9	908 <mark>5</mark> NA	18782	NA1894	4 NA190	5 NA189	5 NA1906	7 NA189	49 NA1898	37 NA189	51 NA189	94 NA189	45 NA1897	0 NA1890	54 NA1906	8 NA1897	76 NA1894
0) N <mark>A190</mark>	70 NA:	19012 N	A18971 🛚	418969 N	19063 N	A18968	NA19075 N	A19082	NA19056	NA19090	NA19083 N	A19088 N	NA18963 N	A19081 N	NA19062 N
A	1953	NA: 89	54 NA19	084 NA18	3 <mark>94</mark> 6 NA18	9 0 NA19	057 NA1	9064 NA19	076 NA1	9002 NA1	9007 NA1	9089 NA19	091 NA18	3979 NA19	058 NA19	9060 NA18
9	4 <mark>7</mark> NA1	89 <mark>9</mark> 1	NA18989	NA18984	4 N A18943	N. 18981	NA1898	6 NA18967	7 NA1905	9 NA1899	8 NA1900	4 NA19009	NA1906	5 NA19078	NA19080) NA18974
	NA1899	3 N <mark>A</mark> 18	8972 NA	18977 NA	18 <mark>,</mark> 62 NA	189 5 0 NA	18948 N	A18942 NA	18965 N	A19054 N	A19006 N	A19072 NA	19001 N/	18973 NA	18990 NA	18966 NA
1	010 N	A1 <mark>9</mark> 29:	3 NA189	59 NA189	952 <mark>A</mark> 189	57 N <mark>11</mark> 89	88 NA18	978 NA190	965 NA18	997 NA18	939 NA18	992 NA189	41 NA190	077 NA189	85 NA189	983 NA190
8	<mark>న</mark> NA19	<u>087 N</u>	419011	NA18980	NA1 <mark>8,61</mark>	NA189.5										
1		1064	2 rs5	58604819	9 G	А	10	Ø PAS	SS AC	=3;AF=0.	00419329	;AN=208;N	IS=2504;[)P=1360;E	AS_AF=0	.003;AMR_
A	F=0.00	14; АГ	R_AF=0.	0129;EUF	R_AF <mark>=0;S</mark> A	S_AF=0;A	A=. ;	VT=SNP	GT	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	aja	0 0	0 0	0 0	0 0	0 0	0 0
	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0
	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	فإف	0 0	0 0	0 0	0 0	0 0	0 0
	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	010	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	919	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	0 1								
1	-	1100		75272151		G	10			•	•	AN=208;NS	•	•		· -
A		•	-	•	R_AF=0.08	• –			•		0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	סוס	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	010	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	0		00	1 0	00	0 0	0 0	0 0	0 0	00	0 0	0 0	0 0	0 0	0 0	0 0
	0		00	010	<u>a</u> a	0 0	0 0	0 0	0 0	00	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	סוס	0 0	0 0	0 0	0 0							
1	1 11012 rs544419019 C G 100 PASS AC=3;AF=0.0880591;AN=208;NS=2504;DP=2090;EAS_AF=0.0367;AMR_ AF=0.0965;AFR_AF=0.1346;EUR_AF=0.0885;SAS_AF=0.0716;AA=. ;VT=SNP CT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
A		•	-	•	-	• –			•		0 0	0 0	0 0	0 0	0 0	0 0
	0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0
	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	טוט	0 0	0 0	0 0	0 0	0 0	0 0

1000 Genomes Project (JPT population)

Haplotype: a sequence from a single chromosone SNP: single nucleatide polymorphism allele: one type of variant at a site ancestral allele of the ancestor of all segs derived allele OF mutated sequences reference - "Whoever was squenced first Alternate: Variation discovered later

