CS 364
COMPUTATIONAL

BIOLOGY

Sara Mathieson
Haverford College

Feedback and schedule notes

m More time for labs, midnight deadline

m More board work, more practice problems
m Random partners, mixed feelings

m Exam: Thursday Oct 10 (in-class)

m More office hours (may not have another official time but feel

free to make appointments!)

Academic Integrity notes

From the syllabus:

More details for this course:

Under no circumstances may you hand in work done with (or by) someone else under your own name. Your
code should never be shared with anyone; you may not examine or use code belonging to someone else, nor
may you let anyone else look at or make a copy of your code. This includes, but is not limited to, obtaining
solutions from students who previously took the course or code that can be found online. You may not share
solutions after the due date of the assignment.

Discussing ideas and approaches to problems with others on a general level is fine (in fact, we
encourage you to discuss general strategies with each other), but you should never read anyone
else's code or let anyone else read your code. All code you submit must be your own with the following
permissible exceptions: code distributed in class, code found in the course text book, and code worked on
with an assigned partner. In these cases, you should always include detailed comments that indicates on
which parts of the assignment you received help, and what your sources were.

GitHub copilot (or any other software for automatically generating code) *is allowed* for this course, but
you must still understand the code you are submitting. You should also include a comment in your code
indicating any Al tools you used. We will be talking about how to best make use of these types of tools, and I
recommend using them to help complete short code fragments, not generate entire solutions. All submitted
code must be thoroughly understood, and exams will include demonstrating that you deeply understand the
algorithms we're implementing.

Academic Integrity notes

Example of citing stack overflow:

A: The syntax is:

6555 a[start:stop] # items start through stop-1

a[start:] # items start through the rest of the array
How does Python's slice notation work? That is: when | write code like alx:y:z], al:], v al:stop] # items from the beginning through stop-1
al:] # a copy of the whole array

al::2] etc., how can | understand which elements end up in the slice?

“ There is also the step value, which can be used with any of the above:

See Why are slice and range upper-bound exclusive? to learn why xs[0:2] == [xs[@], xs[1]], not [...,

xs[2]1 .

alstart:stop:step] # start through not past stop, by step

See Make a new list containing_every Nth item in the original list for xs[::N] .

See How does assignment work with list slices? to learn what xs[0:2] = ["a", "b"] does.

The key point to remember is that the :stop value represents the first value that is not in the

python

slice

sequence

selected slice. So, the difference between stop and start is the number of elements
selected (if step is 1, the default).

The other feature is that start or stop may be a negative number, which means it counts
from the end of the array instead of the beginning. So:

al-11] # last item in the array
a[-2:] # last two items in the array

In you r Code- al[:-2] # everything except the last two items
L]

arr ='np.zeros((3, 3))
print(arr[:, 0])

Academic Integrity notes

Example of citing github copilot:

code below generated with github copilot with prompt:
"write a function to parse a fasta file into a list of sequences”
def parse_fasta(file):
with open(file) as f:
lines = f.readlines()
seqs = []
seq = ""
for line in lines:
if line[Q] == ">":
if seq:
seqs.append(seq)
seq = ""
else:
seq += line.strip()
seqs.append(seq)
return seqs

Outline

m Global sequence alignment (Needleman-Wunsch)

m Local sequence alignment (Smith-\Waterman)

m Alignment variations

Reading: Durbin 2.1-2.3
(on hold in the library)

Global Sequence Alignment

Concept: Alignment score

How good is a particular alignment?

mismatch match

pPEPERY
;- ARFMY Score:

+1 for a match
-1 for a mismatch
gap -1 for a gap

Score=-1+1-1-1-1+1=-2

Handout 7, first question

Extra exercise (discuss with a partner)

y
A C What alignment does the
given trace-back represent?
<+“——

Extra exercise (discuss with a partner)

y
A C What alignment does the
given trace-back represent?
<+“——

Dynamic programming

Problem we
want to solve

The optimal solution to problem n+1 can be expressed in terms of
the optimal solution to problem n.

Lots of the smaller problems are actually the same problem so as
long as we remember the solution, we only have to solve them once.

Global alignment (Needleman-Wunsch)

m S(i,j) = best alignment score for x[1...i] and y[1...j] (inclusive), with
gap penalty g (usually negative) and matching table m

m Base case: S(’i, 0) _

m Recursion:

Dynamic programing for alignment

Align the strings AAAC and AGC

Empty String
\ Alignment score for “AG” and “A”
y.
A G /

Alignment A ‘ ‘
score for *”
and “AAA" N A

ol

Dynamic programing for alignment

Align the strings AAAC and AGC

e.g. this is the cost to align
them empty string “” and “AG”

A G C

0 =2 -4 -6
A -2
A -4
A -6
C -8

Initialization step

Dynamic programing for alignment

Align the strings AAAC and AGC

A G C

0 =2 -4 -6
A -2
A -4
A -6
C -8

Initialization step: traceback

Dynamic programing for alignment

Align the strings AAAC and AGC
a) Addagaptoy;-2-2=-4
b) Addagaptox;-2-2=-4
c) Extend alignment; O+1=+1

A G C
0 | ~2 -4 -6
9 4
1 3
A -2
b)
A —4
A -6
C -8

Recursive step

Dynamic programing for alignment

Align the strings AAAC and AGC

c) Extend alignment; O+1=+1

A G C
0 =2 -4 -6
A -2 +1
A -4
A -6
C -8

Recursive step

Dynamic programing for alignment

Align the strings AAAC and AGC

a) Add agaptoy;-4-2=-6
b) Add a gap to x; +1-2=-1
c) Extend alignment; -2-1=-3

A G C
0 _2 _4 6
A o 1y 4y Te
b)
A _4
A —6
C i

Recursive step

Dynamic programing for alignment

Align the strings AAAC and AGC

b) Add a gap to x; +1-2=-1

A G C
0 2 | —4 -6

A -2 1 @l -1

A 4

A G

C -8

Recursive step

Dynamic programing for alignment

Align the strings AAAC and AGC

A G C

0 @¢— -2 44— -4 44— -6
R | TR R R

A - + I -
AV AN SC

>
|
D>
|
|_\
O
!
N

;
4

Q
|
o
|
Ul
|
AN
|
I_\

Recursive step

Dynamic programing for alignment

Align the strings AAAC and AGC

AG-C
AAAC

One optimal alignment:

A G C

0 44— -2 44— -4 -6

N 4

A - 1 e - -
A <

Ef
F e

«E

Q
|
o
|
Ul
|
AN

Traceback step

Dynamic programing for alignment

Align the strings AAAC and AGC

Optimal alignments:

A G c
0 — 2 ¢— -4 44— -6
A -2 ‘!‘R\ 11 g -1 -3
4 AR
A — —

AG-C
AAAC

A-GC
AAAC

—-AGC
AAAC

Traceback step

Handout 7, first page

[4 0‘

-4 -5 -6
-2 -3 -4
0 -1 -2
2 1 0

71° 1 0

’O‘ ’0‘ 2
0 1 1%

G T A G C
0 < -1< -2< -3< -4 < -5 <
SN N\
-1 1 < 0 < -1< -2 <——-3 <—
A T

|
-2 0 0 1<+ 0<+f+—-1<
NS
-3 L . o) 2 <+— 1 <
I\ A ,‘? T
4 » 0< I e lel 0
I N
-5 Loy L 1 < ’(‘)‘ ’c‘)‘ 2
A A A T \\ ,‘?
6 “p “p (o) 0 1 "

G T A G C A
0 < -1< -2< -3< -4 < -5 < -6
SN "\
-1 1< 0 < -1< 2 <—+—-3<+—-4
A T

|
-2 o® 0 1< 0<t+—-1<t+—-2
RNANAN
-3 L) Ly o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
o L NN
-5 Loy L 1 < ’(‘)‘ ’c‘)‘ 2
A A A T \\ I‘
-6 “p oy o 0 1 A

G T A G C A
0 < -1< -2< -3< -4 < -5 < -6
SN "\
-1 1< 0 < -1< 2 <—+—-3<+—-4
A T

|
-2 o) 0 1<+—0<t+—-1<+—-2
RN
-3 L Ly o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
A A A ? ‘\ T \
-5 Loy L 1 < ’(‘)‘ ’c‘)‘ 2
A A A T \\ I‘
-6 iy Ly o 0 1 -

AC

G T A G C A
0 < -1< -2< -3< -4 < -5 < -6
SN "\
-1 1< 0 < -1< 2 <—+—-3<+—-4
A T

|
-2 o) 0 1<+—0<t+—-1<+—-2
RN
-3 L Ly o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
A A A ? ‘\ T \
-5 Loy L 1 < ’(‘)‘ ’c‘)‘ 2
A A A T \\ I‘
-6 iy Ly o 0 1 -

TAC
CA-

G T A G C A
0 < -1< -2< -3< -4 < -5« -6
SN "\
-1 1< 0 < -1< 2 <—+—-3<+—-4
A T

|
-2 o) 0 1<+—0<t+—-1<+—-2
R RN
-3 L) Ly o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
A A A ,? \\ ? \
-5 Loy L 1 < %‘ 4? 2
A A A T \\ I‘
-6 “p oy o 0 1 A

GTAC
GCA-

G T A G C A
0 < -1< -2< -3< -4 < -5« -6
SN "\
-1 1< 0 < -1< 2 <—+—-3<+—-4
A T

|
-2 o) 0 1<+—0<t+—-1<+—-2
R RN
-3 L) Ly o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
A A A ,? \\ ? \
-5 Loy L 1 < %‘ 4? 2
A A A T \\ I‘
-6 “p oy o 0 1 A

AGTAC
AGCA-

G T A G C A
0 < -1< -2< -3< -4 < -5« -6
AN \
-1 1 — 0 < -1 < 2<+—-3<+—-4
A T

|
-2 o) 0 1<+—0<t+—-1<+—-2
BN
-3 L) L o) 2<+—1<+—0
A A ,‘? T
4 » 0< I e lel 0
A A A ,? \\ ? \
-5 Loy L 1 < %‘ 4? 2
A A A T \\ I‘
-6 “p oy o 0 1 A

-AGTAC
TAGCA-

G T A G C A
0 < -1< -2< -3< -4 < -5« -6
Y .
-1 1 — 0 < 1< 2<+——-3<+—-4
A T

|
-2 o) 0 l1<t+—0<t+—-1<+—-2
SN
-3 L) Ly o) 2<+—1<+—0
A A ,‘r T
4 » 0< I e lel 0
A A A ,‘? \\ /‘T \
-5 Loy L 1 <") 2
A A A T \\ I‘
-6 “p oy o 0 1 A

G-AGTAC
GTAGCA-

Alignment with Protein Sequences

Central Dogma of Molecular Biology

m More correctly stated: “The central dogma states that information in nucleic acid
can be perpetuated or transferred but the transfer of information into protein is
irreversible.” (B. Lewin, 2004)

DNA RNA Protein

translation

transcription A\ D
‘.;;-:-;_'_ = vl :’ ('. .\,.‘;_‘:’"
Ny — o T SN
4 - L~ ~ _
W
Qreplication % reverse

transcription

Image: http://ib.bioninja.com.au/

http://ib.bioninja.com.au/

Central Dogma of Molecular Biology

m More correctly stated: “The central dogma states that information in nucleic acid
can be perpetuated or transferred but the transfer of information into protein is
irreversible.” (B. Lewin, 2004)

DNA ATGCAATCAGATTAG

RNA CAAUCAGAU

GFP protein example

protein O S D

Codon table

A,GCU,GCC,GCA,GCG,AGA
R,CGU,CGC,CGA,CGG,AGG
N,AAU,AAC

D,GAU,GAC

C,UGU,UGC

Q,CAA,CAG

E,GAA,GAG
G,GGU,GGC,GGA,GGG
H,CAU,CAC

|,AUU,AUC,AUA
L,UUA,UUG,CUU,CUC,CUA,CUG
K,AAA,AAG

M,AUG

F,UUU,UUC
P,CCU,CCC,CCA,CCG
S,UCU,UCC,UCA,UCG,AGU,AGC
T,ACU,ACC,ACA,ACG

W,UGG

Y,UAU,UAC
V,GUU,GUC,GUA,GUG

Scoring alignments

Simple case: Each mismatch/gap scores -1, each match +1

More biologically relevant, different operations have different costs

Al 4

R| -1] 5

N[-2 o] 6 BLOSUM 62 scoring matrix

D[-2| -2| 1| 6

Cc|l of -3] -3] -3 9

Q| -1| 1| o] of -3] 5 (positive values are shaded)

E| -1] O] O] 2| -4, 2| 5

G| 0| -2| of -1f -3] -2| -2| 6

H| -2| O 1| -1 -3 O Of -2(8

I| -1 -3] -3[-3| -1] -3[-3| -4| -3| 4

L| -1 -2| -3]| -4| -1| -2| -3[-4] -3] 2| 4

K| -1] 2| o] -1| -3[2| 2| -2 -1] -3] -2| 5

M| -1f -1]| -2| -3[-1| of -2 -3] -2 1| 2| -1 5

F| -2| -3| -3| -3| -2| -3| -3| -3| -1| O Of -3 Of 6

P| -1| -2| -2| -1| -3| -1| -1f -2| -2| -3] -3[-1]| -2| -4 7

S| 1| -1 2| of -1f o] o] of -1] -2] -2[of -1] -2 -1 4

T| of -1 o] -1f -1 -1] -1 -2 -2| -1 -1f -1] -1| -2 -1| 1| 5

wW| -3| -3 -4| -4| -2| -2 -3| -2| -2 -3| -2| -3] -1 1| -4| -3[-2[11

Y| -2 -2 -2| -3| -2[-1 -2| -3| 2| -1]| -1| -2[-1| 3| -3[-2| -2| 2| 7

vl o -3| -3[-3[-1] -2| -2| -3| -3] 3| 1| -2| 1| -1f -2| -2| of -3| -1| 4
Al Rl N| D] ¢/ Q| E| G| H| I| L| K| M F| P[S| T W[Y| V

The values for amino acid substitutions were obtained from Henikoff S & Henikoff JG (1992) Amino acid
substitutions matrices from protein blocks. Proc. Natl. Acad. Sci. 89: 10915-10919.

Moving to proteins: BLOSUM match/mismatch matrix

A RND CQEGHTIILIKMEFZPSTWYWV

SRR TR S

PPN TP

MmMtFrtFaNANMANANMANNMeaded<tTMAN-ES N M
I e e I L L I O I O

ST TTFIFTTFTINTI NGO

s R AR DL TR

TAYTeTTAYYYeTYYTIYT YTy

YRR PTOSFOCT gy

T AN MeEOANMANEANAINO N A e e e
I I B (N . I I I B

TSGR O GG

TP TP

R Sk tab i

YOO YR PR TP TRAND

R RREEDE & SRRt

TOSNYNNQON G T TPy

TSNNSO RLOaTq

O T TR TR

YOOI TR FOTT Y

FeempeSSINRe NI Y

TSNS YO PAUNGRYUTH YD

RSO TTIT T TIPS

I XZAOUVUCCOWLUOUIIHJANXYSLOOVNEFE=>>|

Substitution scores between amino acids

WNolue e i
T/OS&' XT(\/ O\\\
,b\\s(()\\:UV\V %Jﬁ
Gl

e b 4

~

Local Sequence Alignment

Local alignment

Find best alighing subsequences, but do not need to align the whole sequence

Global alignment

——T—CC-C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

e N I O I
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

Local alignment

tcgCAGTTATGTCAGHggacacgagcatgcagagac

EEEEE RN
aattgccgccgtegttttcagCAGTTATGTCAGRtTC

|gnore these bits of sequence

Local alignment

Human Genome

Exons (protein coding sequence) ~1%

Other conserved sequence (noncoding RNA, regulatory etc...) 5-10%

“Junk” not evolutionarily conserved ~90%

Local alignment algorithm

Three differences with global alignment:

Local alignment algorithm

Three differences with global alignment: 1) Initialize edges to O

A A G A

0 0 0 0 0
T 0
T 0
A 0
A 0

Local alignment algorithm

Three differences with global alignment: 1) Initialize edges to O
2) Do not allow scores to go negative

A A | G | =a
0 0 0 0 0

T O‘—l‘

T 0

A 0

A 0

Local alignment algorithm

Three differences with global alignment: 1) Initialize edges to O
2) Do not allow scores to go negative

A A G A
0 0 0 0 0
T 0 0
T 0
A 0
A 0

Local alignment algorithm

Three differences with global alignment: 1) Initialize edges to O
2) Do not allow scores to go negative
3) Find alignment from best score in the
table (not necessarily bottom right)

A A G A

0 0 0 0 0
T 0 0 0 0 0
T 0 0 0 0 0
A TREAE 0 |1
A o | >1 | o R
G 0 0 0 3 1

Local alignment algorithm

Three differences with global alignment: 1) Initialize edges to O
2) Do not allow scores to go negative
3) Find alignment from best score in the
table (not necessarily bottom right)

‘ AAGa

a a - a tAAG
0 0 0 0 0

T 0 0 0 0 0

T 0 0 0 0 0

A 0 ‘T_ 1 0 |1

A S E M 2 R

G 0 0 OVT 3 |‘ 1

€ S’(TQ\&
V\Q\OO\&\(F\M\@
7y - LT BN

O

ot VR A 0

ey

)

