CS 364
COMPUTATIONAL

BIOLOGY

Sara Mathieson
Haverford College

Lab 1 runtime notes

m Nalve average case: O(nhm)

m Boyer-Moore average case: O(n)

m Both in worst-case: O(nm)

Outline

m Finish de Bruijn graphs and their practical applications

m Velvet assembler (uses DBGs)

m Begin: pairwise sequence alignment

Reading: Durbin 2.1-2.3
(on hold in the library)

de Bruijn graphs in practice

e i '
Q'of cd % = 6@ / v)
(QVV\QU O =

&1 \\(\()\ _Nou Q\/B
P Sl e 3}?«9\&

De Bruijn graph
A procedure for making a De Bruijn graph

for agenome

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

Pick a substring length k: 5

Start with an input string: a_long_long_long_time

Take each k mer and split :}/Or%—
into left and right k-1 mers long ong

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

Slide: adapted from Ben Langmead, John Hopkins

De Bruijn graph
A procedure for making a De Bruijn graph

for agenome

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

Pick a substring length k: 5

Start with an input string: 2@_10ng_long_long_time

Take each k mer and split ‘1/0%—
into left and right k-1 mers long ong

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

Slide: adapted from Ben Langmead, John Hopkins

Building k-mer graph with reads

* Pick k (for m = 100 bp, k = 21-41 is common) -

* For each read:
For each k-mer in read:
- add L&R (k-1)-mers to graph as nodes (if not already there)
- add edge from L -> R

From last time: # k-mers is O(n) => # nodes is O(n), and # edges is O(n)

But: how do we know if (k-1)-mer is already in our graph or not? Do we have to compare
with all nodes?

How many k-mers are there?

There are 4% possible k-mers

Sequence, length n

At most n-k+1 distinct k-mers

K-mers

So min(4X, n-k+1) k-mers in a sequence

A 4
n-k+1 /
—f— Actual # k-mers observed
>

Kk

distinct k-mers

(Assuming n>>k)

Multiple reads

Seq uence. . AGTATCTGTCTTTGATTCCTAACTCATCCTATTATTTATCGCACCTACGTTCAATATT..

AGTATCTGTC
R :
eads TATCTGTCTT
CTGTCTTTGA
TGTCTTTGAT
TCTTTGAT’IW
_CTGTCTTTGA TGTCTTTGAT
_ | CIGTCT | — JTGTCTT I
Split each read | TeTeTT } GICTTT
into k-mers: | GICTTT “\" - TCTTTG
TCTTTG ' CTTTGA
crTreal-— I rrrear!

Build de Bruijn graph from these k-mers. Key: The number of nodes in the graph
does is bounded by the number of k-mers in the sequence [max(4, n-k+1)], so it
does not grow indefinitely with the number of reads like the overlap graph.

Implementation considerations

1) In practice, k-mers must be hashed so we can easily compare them
* for us we will use sets which will hash implicitly

2) When graphs become larger, recursive solutions are no longer practical
* for us the examples are small enough we can use recursion

What “messes” up our DBG?

1) Repeats of length (k-1) or longer
2) Gaps in coverage
3) Differences in coverage

4) Sequencing errors

Issues with DBGs

Gaps in coverage can lead to disconnected graph

Graph fora_long long long time, k=5 but omitting ong_t:

Connected components are individually
Eulerian, overall graph is not

Slide: adapted from Ben Langmead, John Hopkins

Issues with DBGs
De Bruijn graph

ng_l

Differences in coverage also lead to non- glo Y\ (alo
Eulerian graph

_lon
Graph fora_long long long time,
k =5 but with extra copy of ong_t: ong
Graph has 4 semi-balanced nodes,
isn’t Eulerian

ong_

_tim

time

Slide: adapted from Ben Langmead, John Hopkins

|Issues with DBGs
De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph fora_long long long time, k =5 but with
error that turns a copy of long_into 1xng_

Graph is not connected; largest
component is not Eulerian

Slide: adapted from Ben Langmead, John Hopkins

One workaround for coverage issues:

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use

edge weights instead < P S
, NN
SSOWV i "«’}L’b»

R0

—

SS

Weight = # times
k-mer occurs

SSSSSN %
i '

il

«

A
N
Q\I

1]

N\
'\
N \§

/

I
/

"\ N
LR

gy

—

\

Using weights, there’s
one weighted edge for
each distinct k-mer

After: one weighted
edge per distinct k-mer

Before: one
edge per k-mer

Slide: adapted from Ben Langmead, John Hopkins

What did we give up by going from OLC
to DBG?

Reads are immediately split into shorter k-mers; can't resolve
repeats as well as overlap graph

Only a very specific type of “overlap”is considered, which makes
dealing with errors more complicated

Read coherence is lost. Some paths through De Bruijn graph are
inconsistent with respect to input reads.

Slide: adapted from Ben Langmead, John Hopkins

Issues with DBGs

Casting assembly as Eulerian walk is appealing, but not practical

Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) is an improved formulation where
we seek a walk over the De Bruijn graph, where walk contains each
read as a subwalk

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

Slide: adapted from Ben Langmead, John Hopkins

But we still have advantages...

Building the de Bruijn graph:
- O(Rm) since we go through each read and k-mers along the length of the read
- O(n) space to store since both # edges and # nodes are O(n)

Finding paths through the graph:

- assuming Eulerian, O(n) to traverse since # edges is O(n)

Velvet Assembler

Velvet Assembler (Zerbino & Birney, 2008)

m The first truly practical de Bruijn graph assembler

m Combines several algorithms to simplify the raw k-mer graph

Resource

Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs e
Daniel R. Zerbino and Ewan Birney' ’ Citations

EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15D, United Kingdom

We have developed a new set of algorithms, collectively called “Velvet,” to manipulate de Bruijn graphs for genomic
sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for
high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends
information only, one can produce contigs of significant length, up to 50-kb N5O length in simulations of
prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read
pairs, Velvet generated contigs of ~8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our
simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage
very short reads in combination with read pairs to produce useful assemblies.

[Supplemental material is available online at www.genome.org. The code for Velvet is freely available, under the
GNU Public License, at http:/ / www.ebi.ac.uk/~zerbino/velvet.]

Velvet paper: Figure 1

Each (k-1)-mer adds one e OO
: . . : O OO0
nucleotide of marginal information SLFE
KO
/ ACCA
w
A Fr & LVYYD Combine nodes into
Ty LA 9,90 : "
&' G v UK r)off»)/ycpoc)/y blocks
AN when graph is “linear”
CTG—{ATTG SED
YLD — ILOVD $&
§.06
A
—r 08 SEE ik
Reverse complement Py 5)632’&009 B
LY
‘529?300
e g

Velvet paper: Figure 2
(Tour Bus algorithm)

Velvet paper: Figure 2
(Tour Bus algorithm)

5
A B D ;7(E |
When we hit D for the second time, compare th/ E___,
sequences of the two ways we got there: .
BC and B’C'. If they are judged similar, error
correct and merge
A B — D £
\ j ;I
K C D’ j
D

Error correction

Density
Genome: .AGTATCTGTCTTTGATTC... A C 2C
. AGTATCTGTC
Reads: TATCTGTCTT
CTGTCTTTGA
TGTCTTTGA
TCTTTGATTC
(SIGTCTTIGA TGggggpg;T
_ Forerer P FTGTCTT
Split each read | TGTCTT = | GTCTTT I
into k-mers: | GrerTT - '““f: __________ | rcrrTe |
| rcrrrel | . cTrTTGA |
CTTTGR TTTGAT] _
-——— —_———— # times we see each k-mer

k-mers that occur twice in genome

Error correction

Density
Genome: AGTATCTGTCTTTGATTC.. W C 2C
. AGTATCTGTC
e TATCTGTCTT
CTGTATTTGA
TGTCTTTGA
TCTTTGATTC
CTGTCTTTGA TGTCTTTGAT
. FereTaT X FTGTCTT ;
Spliteachread 1 rerarr—"7 " | greTTT
into k-mers: | GrAaTTT - 'X _________ | rcrrTe |
| Tarrret X .. cTTTGA |
_ _arrTeA K TTTGAT]|

_——— - # times we see each k-mer

This is bad because the de Bruijn Graph will
include all these erroneous k-mers that are
not in the reference so it will grow >> O(n)

k-mers that occur twice in genome

k-mers with errors

Error correction

Density
Fortunately there is a simple solution W

Chose some cutoff and filter out k-
mers that occur less than the cutoff

In fact, we can do even better:

If we chose k large enough that n<<4k and
assume that errors are rare, then we can
actually correct the errors by replacing each
k-mer less than the cutoff by the closest (in
terms of edit distance) k-mer that is above # times we see each k-mer
the cutoff.

—>

Error correction

Fortunately there is a simple solution

Chose some cutoff and filter out k-
mers that occur less than the cutoff

In fact, we can do even better:

If we chose k large enough that n<<4k and
assume that errors are rare, then we can
actually correct the errors by replacing each
k-mer less than the cutoff by the closest (in
terms of edit distance) k-mer that is above
the cutoff.

k-mers seen
k-mer seen once multiple times

AAAAAA
ACGAAT

TGTCTT ———> TGTATT

CAATGT

Scaffolding
/\ /\g)ntigs arranged in relative position,

o even if there is unknown sequence

- i _—— Scaffolds

Reads Contigs

g%@@@é%@%

123456 7 8 91011121314151617 181920212 2X T

Scaffolding

* Use paired-end reads to arrange

PE reads

Reads Contig

Scaffolds

Evaluating Assemblies

Assembly evaluation

m N5O: for a set of contigs, N50 is the greatest length such
that at least half the bases of the assembly are in a contig
with length N50 or longer

| 100] 70 | € | 50 | 50 | 40 | 30 |

1a. Contigs, sorted according to their lengths.

Image: The Molecular Ecologist

Assembly evaluation

m N5O: for a set of contigs, N50 is the greatest length such
that at least half the bases of the assembly are in a contig
with length N50 or longer

| 100] 70 | e | 50 | 5 | 40 | 30 |

1a. Contigs, sorted according to their lengths.

=>N50 = 60

100 70 60 | 50 | 50 | 40 | 30 |

§ -
S

i

200

Y

&

400

Image: The Molecular Ecologist

Why is N50 a bad evaluation metric?

m We could just loop through cycles in our a graph over and over, generating large
(incorrect) contigs

m We need a better way to evaluate the quality of assemblies

m [ake away: simulated data is every valuable. Take an existing genome, simulate
random reads, then try to reconstruct.

Sequence Alignment

Next Topic: sequence alignment

m Goal: given two sequences, what is the best match or “alignment” between them?

m Global alighment: align the entire sequences start to finish

m Local alignment: find portions of the two sequences with high similarity

m Homologous: sequences that are similar due to descent from a common ancestor

m Usually we are aligning homologous sequences (not sequences from completely different
regions of the genome

Example alignments: human, chimp, macaque + other species

Zebrafish
X _tropicalis -MASAKVAVV KGIGLAIVR? F
vuler: 1o osdsdl s anadlisideviaedl

F L VLINNAGIAFKV?
Spes) porpesys [ooy |1 jspmrmemes 1]

Human VNI)
Macaque b = ?
Mouse I CR E
Rat Vi e L

(o]

2

| <
= =N=

=

Cat

Chick
Zebrafish

X _tropicalis
ruler

i

-

1

< <

Vi

(]

=2

-
3
n

Chick §
Zebrafish K
X tropicalis KV

rular

New Insights into the Enigma of Immunoglobulin D

Today, we are only considering two sequences (“pairwise alignment”)

Human FMPFDI
Chimp PMPFDIX

If time next week:

Cat

Chick
Zebrafish

X tropicalis

AR
g

ABIT

\gy

Why sequence alignment?

Understand evolutionary relationships between different species

In particular: understanding fast-evolving bacterial and viral strains is important
for health

Understand protein function

Understand diversity at the species level (important for diseases with a genetic
component)

Example

BACGGCTAGTTACG

BTCGTAGTATACCGA

m How should we “line them up” to get the best overlap?

‘ \45\\
7.0 >\p o\o

Y\{\QO\\(\—j -
< O :> (N SRR

C\/\OS{ N
TP

