
CS 364
COMPUTATIONAL

BIOLOGY
Sara Mathieson

Haverford College

Outline

■ Recap goals of the BWT

■ FM-Index data structure

■ Using the BWT for read mapping

BWT so far…

Read mapping

…AGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT…

CTTTGATTCCTGCC

CTGCCTCATCCTA

TTATTTATCGCACCTAC

Long reference genome

Many short reads to align Reference doesn’t change so
lets process it once (slow) but
then hopefully it will be fast
to map each read.

Bowtie and BWA (posted reading)
■ First practical read aligners to use the Burrows-Wheeler Transform

Bowtie

BWA

Comparison of Bowtie and BWA

BWT

Slide: adapted from Ben Langmead, John Hopkins

S BW(S)All cyclic permutations

Ex
am

pl
e

fro
m

 th
e

or
ig

in
al

 B
W

T
pa

pe
r

Burrows M, Wheeler DJ: “A block
sorting lossless data compression
algorithm.” Digital Equipment
Corporation, Palo Alto, CA 1994,
Technical Report 124; 1994

I stuffed a shirt or two into my old carpet-bag, tucked it under my arm,
and started for Cape Horn and the Pacific. Quitting the good city of old
Manhatto, I duly arrived in New Bedford. It was a Saturday night in
December. Much was I disappointed upon learning that the little packet for
Nantucket had already sailed, and that no way of reaching that place would
offer, till the following Monday. As most young candidates for the pains
and penalties of whaling stop at this same New Bedford, thence to embark on
their voyage, it may as well be related that I, for one, had no idea of so
doing. For my mind was made up to sail in no other than a Nantucket craft,
because there was a fine, boisterous something about everything connected
with that famous old island, which amazingly pleased me. Besides though New
Bedford has of late been gradually monopolising the business of whaling,
and though in this matter poor old Nantucket is now much behind her, yet
Nantucket was her great original—the Tyre of this Carthage

e.www.rsn.es,t.dg.ardthene.aenssdgdhs,,n,yyypl,eh,egddgtIoIottaedt,senrt,ds
dotdlhotd,dfnesstdyyswrroydntssyyaessdfryskrttoeedtyrfeoysafsdgIrdhdggdglgt
rn,efntsd,ep,rtedrhtetdosff,de,tomdgteIeedrgdrtyegdrc
 e lePphhmrerbhyssphhu nn sfh lcMNNNNCsb ec tCwwwwwh ehhhehh
lldmhScmdwdm-m m a i enaeiuuaa
uuauuu ellealoerneleealnnennneneernrirnainieeen a
agpmhhthhhhrlhbscdrcnngmdrrllrbDnftvkstttlBBBbbhrw
cephhdthfhbhtvtidBnykkkkkpm NNNooooooo
ffuoi dddannnnnnnnnnanaauuiin gccgtc twwt tttttnttttttttt t
twettcstttttgfhd stcnraat ghmfswhhlhnstlozao ehhh hdl
o wulcrrcccccclilps eoooout piaao eioalaaulgar aeea
o a iiareoioieieiaaaaaiaouaioniiiuiiiiiiiiia ro o
iiiaaaastnwtntnto dpb pfsp M cmgptnffFoff fff Hm hhwymrbnlvou a
r pou aooeeoooeeooieeegcooouye lg oraaoaeaaiaaeiaaaneaaiAiaesuiuea iua
euii eo i aeeuaeeheiaraaaaiIesfesaranctsair — o ey l tt n
tsaiia nnnnsa idmMttttttooQod o tooaboie eeeo o t
mlamlatamldao Tral

Text:

BWT:

Compression with BWT

■ We computed the BWT, and showed that we can reconstruct S from
BWT(S)

■ BWT(S) is the same length as S, but in practice we can compress it
to make it smaller e.g:

■ In fact, BWT was originally developed as a compression algorithm.

S= “Tomorrow_and_tomorrow_and_tomorrow$”

BWT(S) = “w$wwdd__nnoooaattTmmmrrrrrrooo__ooo”

Comp = “w$w2d2_2n2o3a2t2Tm3r6o3_2o3”

Compression with BWT

Reconstructing S from BWT: LF mapping

T
C
$
A
A
A
C
G

$
A
A
A
C
C
G
T

8:$ACAACGT
3:AACGT$AC
1:ACAACGT$
4:ACGT$ACA
2:CAACGT$A
5:CGT$ACAA
6:GT$ACAAC
7:T$ACAACG

LF

If we have L, i.e.
BWT(S), we can
get F just by
sorting it à

S=ACAACGT$

Reconstructing S from BWT: LF mapping

T
C
$
A
A
A
C
G

$
A
A
A
C
C
G
T

S=ACAACGT$

F L Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T) in F is the same as in L

Reconstructing S from BWT: LF mapping

T
C
$
A
A
A
C
G

$
A
A
A
C
C
G
T

S=ACAACGT$

F L Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T) in F is the same as in L

Reconstructing S from BWT: LF mapping
Key property 2: The order of each C (also
each A,G,T) in F is the same as in L

$ACAACGT
AACGT$AC
ACAACGT$
ACGT$ACA
CAACGT$A
CGT$ACAA
GT$ACAAC
T$ACAACG

LF
The Cs in the F column are
sorted according to the parts
of the string that follow them

The Cs in the L column are
also sorted according to the
parts of the string that follow
them

S=ACAACGT$

Reconstructing S from BWT: LF mapping
Key property 2: The order of each A (also
C,G,T) in F is the same as in L

$ACAACGT
AACGT$AC
ACAACGT$
ACGT$ACA
CAACGT$A
CGT$ACAA
GT$ACAAC
T$ACAACG

LF
The As in the F column are
sorted according to the parts
of the string that follow them

The As in the L column are
also sorted according to the
parts of the string that follow
them

S=ACAACGT$

Reconstructing S from BWT: LF mapping

T
C
$
A
A
A
C
G

$
A
A
A
C
C
G
T

S=…T$

F L Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T) in F is the same as in L

$ must be
the last
character,
start here

S=…GT$
S=…CGT$
S=…ACGT$
S=…AACGT$
S=…CAACGT$
S=…ACAACGT$

Finish Handout 2

FM-Index data structure

FM-Index: data structure for pattern matching
■ Set of auxiliary data structures computed from the BWT of a string S
■ The FM-Index consists of 3 parts:

FM-Index: data structure for pattern matching
■ Set of auxiliary data structures computed from the BWT of a string S
■ The FM-Index consists of 3 parts:

FM-Index: data structure for pattern matching
■ Set of auxiliary data structures computed from the BWT of a string S
■ The FM-Index consists of 3 parts:

■ The suffix array A is not technically part of the FM-Index, but we will
need it for the last step of finding out where pattern P occurs in the
original string S

■ A[i] is the index of F[i] in the original string

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1
2 a1 $abaa b1
3 a2 aba$a b2
4 a3 ba$ab a2
5 a4 baaba $1
6 b1 a$aba a3
7 b2 aaba$ a4

1234567

Step 1: compute the BWT of S

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7

2 a1 $abaa b1 6

3 a2 aba$a b2 3

4 a3 ba$ab a2 4

5 a4 baaba $1 1

6 b1 a$aba a3 5

7 b2 aaba$ a4 2

1234567

Step 2: compute the suffix array, where A[i] = index of F[i] in the original sequence

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0

2 a1 $abaa b1 6 0

3 a2 aba$a b2 3 0

4 a3 ba$ab a2 4 0

5 a4 baaba $1 1 1

6 b1 a$aba a3 5 1

7 b2 aaba$ a4 2 1

1234567

Step 3: compute the occurrence table for each character c (# times c in L[1…i])

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1

2 a1 $abaa b1 6 0 1

3 a2 aba$a b2 3 0 1

4 a3 ba$ab a2 4 0 2

5 a4 baaba $1 1 1 2

6 b1 a$aba a3 5 1 3

7 b2 aaba$ a4 2 1 4

1234567

Step 3: compute the occurrence table for each character c (# times c in L[1…i])

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 3: compute the occurrence table for each character c (# times c in L[1…i])

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 4: for pattern P, start with its last char and compute the start and end points

sp(a)

ep(a)

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 5: for each new character, find the correct number of occurrences in L

0 -> 2 means we must
have seen b1 and b2 in

the L column

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 5: for each new character, find the correct number of occurrences in L

Find where b1 and b2
are in the F column,

and repeat the process

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 5: for each new character, find the correct number of occurrences in L

sp(ba)
ep(ba)

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 5: for each new character, find the correct number of occurrences in L

2 -> 4 means we must
have seen a3 and a4 in

the L column

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 5: for each new character, find the correct number of occurrences in L

Find where a3 and a4
are in the F column,
done since P ended

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 6: when we reach the end of P, we should have the start/end points in F

sp(aba)
ep(aba)

Note that start and end
points are inclusive

Example: S = abaaba$, P = aba

i F L A occ($) occ(a) occ(b)
1 $1 abaab a1 7 0 1 0

2 a1 $abaa b1 6 0 1 1

3 a2 aba$a b2 3 0 1 2

4 a3 ba$ab a2 4 0 2 2

5 a4 baaba $1 1 1 2 2

6 b1 a$aba a3 5 1 3 2

7 b2 aaba$ a4 2 1 4 2

1234567

Step 7: we are not truly done until we find the locations in the original string!

sp(aba)
ep(aba)

Use A (suffix array) to
find the original

locations of P in S

BWT pattern matching algorithm

Handout 3

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1
2 a1 $barba r1
3 a2 ra$bar b1
4 a3 rbara$ b2
5 b1 ara$ba r2
6 b2 arbara $1
7 r1 a$barb a2
8 r2 bara$b a3

12345678

Work with a partner!

1) Fill in a column for A
as well

2) Try to come up with a
formula for sp and ep
in terms of M and occ

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

M[c] is the first index
of character c in F
(Store instead of F)

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

M[c] is the first index
of character c in F
(Store instead of F)

sp(a) = 2
ep(a) = 4

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

M[c] is the first index
of character c in F
(Store instead of F)

sp(ba) = M[b] + # b’s we saw right before the first a
ep(ba) = M[b] + # b’s we saw up until the last a

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

M[c] is the first index
of character c in F
(Store instead of F)

sp(ba) = 5 + 0
ep(ba) = 5 + 2 – 1 (subtract 1 since we are being inclusive)

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

M[c] is the first index
of character c in F
(Store instead of F)

sp(ba) = 5
ep(ba) = 6

Handout 3 example: S = barbara$, P = ba

i F L A occ($) occ(a) occ(b) occ(r)
1 $1 barbar a1 8 0 1 0 0

2 a1 $barba r1 7 0 1 0 1

3 a2 ra$bar b1 5 0 1 1 1

4 a3 rbara$ b2 2 0 1 2 1

5 b1 ara$ba r2 4 0 1 2 2

6 b2 arbara $1 1 1 1 2 2

7 r1 a$barb a2 6 1 2 2 2

8 r2 bara$b a3 3 1 3 2 2

12345678

c M[c]
$ 1

a 2

b 5

r 7

Use A to find locations
in original string

sp(ba) = 5
ep(ba) = 6

Pattern matching with BWT

• Setup time O(N)

• Search time O(M)

• Storage space O(N)
• O(1) to store F (i.e. M)
• O(N) to store L (i.e. BWT(S))
• O(N) to store A
• O(N|S|) to store OCC (”checkpointing” extension allows you to

store only part of OCC, without increasing complexity).

• Inexact matching can be implemented in a similar way to inexact
matching with little extra cost (as long as few mismatches)

Algorithm Setup time Lookup time Storage space

Boyer-Moore O(M) O(N) O(M)

k-mer hash table O(N) O(M) O(N)

BWT/FM-index O(N) O(M) O(N)

Summary

But, in practice, for the read mapping problem, BWT approaches have turned
out to be the most efficient. Almost all sequence data is processed with a
program called bwa which uses BWT to map.

Brief history of BWT and read mapping application
• 1994, BWT introduced (as a compression algorithm)

• Burrows, M. and Wheeler, D.J. (1994) A block-sorting lossless data compression
algorithm. Technical report 124, Palo Alto, CA, Digital Equipment Corporation.

• 2000, FM-index for fast searching
• Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with

applications. In Proceedings of the 41st Symposium on Foundations of Computer
Science (FOCS 2000), IEEE Computer Society, pp. 390–398.

• 2008, BWT-SW for sequence alignment
• Tam, C. K. Wong, S. M. Yiu (2008) Compressed indexing and local alignment of

DNA, Bioinformatics 24

• 2009, Bowtie for short read alignment (~19,000 citations to date)
• Langmead,B. Trapnell,C. Pop, M. Salzberg, S. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biology
10:R25

• 2009, bwa (~46,000 citations in 2024)
• Li, H. and Durbin, R. Fast and accurate short read alignment with Burrows–

Wheeler transform Bioinformatics 25: 1754–1760

