CS 364
COMPUTATIONAL

BIOLOGY

Sara Mathieson
Haverford College

Outline

m Recap goals of the BWT

m FM-Index data structure

m Using the BWT for read mapping

BWT so far...

Read mapping

Long reference genome

AGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT...

CTTTEATTCCTECT TTATTTATCECACCTRC
CTGCCTCATCCTA
Many short reads to align Reference doesn’t change so

lets process it once (slow) but
then hopefully it will be fast
to map each read.

Bowtie and BWA (posted reading)

m First practical read aligners to use the

Fast and accurate short read alignment with

Burrows—Wheeler transform
Heng Li, Richard Durbin ™ Author Notes

Bioinformatics, Volume 25, Issue 14,|15 July 2009] Pages 1754-1760,
https://doi.org/10.1093/bioinformatics/btp324
Published: 18 May 2009 Article history v

] Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome

Ben Langmead ¥4, Cole Trapnell, Mihai Pop and Steven L Salzberg

Genome Biology 2009 10:R25
https://doi.org/10.1186/gb-2009-10-3-r25 © Langmead et al.; licensee BioMed Central Ltd. 2009
Received: 21 October 2008 = Accepted: 4 March 2009 = Published:}4 March 2009

Comparison of Bowtie and BWA

O YQ&J\
e

e Q Ry Cin K
Evaluation on real data Q S)

Table 2.

Program Time(h) Conf(%) Paired (%)

Bowtie 5.2 84.4 96.3
BWA 4.0 88.9 98.8
MAQ 94.9 86.1 98.7
SOAP2 3.4 88.3 97.5

The 12.2 million read pairs were mapped to the human genome. CPU time in hours on a single core
of a 2.5 GHz Xeon E5420 processor (Time), percent confidently mapped reads (Conf) and percent
confident mappings with the mates mapped in the correct orientation and within 300 bp (Paired),
are shown in the table.

BWT

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaSab
abaaba$ abaSaba abbaSaa
s Y abaabas BW(S)
7 e, ba$abaa
’)70;&%0 ba a b a $ a Last column

Sort Burrows-Wheeler
Matrix

Slide: adapted from Ben Langmead, John Hopkins

final
char sorted rotations

(L)

to decompress. It achieves compression
to perform only comparisons to a depth
transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most
tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set SL[i]$ to be the

turn, set SR[1i]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in
value at a given point in the vector SR
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in
with ch appear in the {\em same order
with chS. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell " \cite{bell}. Burrows M, Wheeler DJ: “A block

sorting lossless data compression
algorithm.” Digital Equipment
Corporation, Palo Alto, CA 1994,
Technical Report 124; 1994

0S8 8888338 38 833338383333

O O F-F- k- @O @ F ® ® O F- F ©® ® O O O O ®

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Example from the original BWT paper

Text:

BWT:

Compression with BWT

I stuffed a shirt or two into my old carpet-bag, tucked it under my arm,
and started for Cape Horn and the Pacific. Quitting the good city of old
Manhatto, I duly arrived in New Bedford. It was a Saturday night in
December. Much was I disappointed upon learning that the little packet for
Nantucket had already sailed, and that no way of reaching that place would
offer, till the following Monday. As most young candidates for the pains
and penalties of whaling stop at this same New Bedford, thence to embark on
their voyage, it may as well be related that I, for one, had no idea of so
doing. For my mind was made up to sail in no other than a Nantucket craft,
because there was a fine, boisterous something about everything connected
with that famous old island, which amazingly pleased me. Besides though New
Bedford has of late been gradually monopolising the business of whaling,
and though in this matter poor old Nantucket i1s now much behind her, yet
Nantucket was her great original—the Tyre of this Carthage

e.www.rsn.es,t.dg.ardthene.aenssdgdhs, ,n,yyypl, eh,egddgtIolottaedt, senrt, ds
dotdlhotd, dfnesstdyyswrroydntssyyaessdfryskrttoeedtyrfeoysafsdglrdhdggdglgt
rn,efntsd, ep, rtedrhtetdosff,de, tomdgteleedrgdrtyegdrc

e lePphhmrerbhyssphhu nn sfh 1cMNNNNCsb ec tCwwwwwh ehhhehh
11dmhScmdwdm-m m a 1 enaeiuuaa
uuauuu ellealoerneleealnnennneneernrirnainieeen a
agpmhhthhhhrlhbscdrcnngmdrrllrbDnftvksttt1BBBbbhrw
cephhdthfhbhtvtidBnykkkkkpm NNNooooooo

ffuoi dddannnnnnnnnnanaauuiin gccgtce twwt tttttnttttttttt t
twettcstttttgfhd stcnraat ghmfswhhlhnstlozao ehhh hdl

o0 wulcrrccccecclilps eoooout piaao eioalaaulgar aeea

o a iiareoioleieiaaaaaiaouaioniiiuiiiiiiiiia ro o)

iliaaaastnwtntnto dpb pfsp M cmgptnffFoff fff Hm hhwymrbnlvou a
r pPou aocoeeoooeeocolieeegcooouye 1lg oraacaeaalaaeiaaaneaallAiaesuiuea iua
eull eo 1 aeeuaeeheiaraaaailesfesaranctsair — o ey 1 tt n
tsalia nnnnsa idmMttttttooQod o tooaboie eeeo ot

mlamlatamldao Tral

Compression with BWT

We computed the BWT, and showed that we can reconstruct S from
BWIT(S)

BWT(S) is the same length as S, but in practice we can compress it
to make it smaller e.g:

S= “Tomorrow and tomorrow and tomorrows”

BWT(S) = “wSwwdd nnoooaattTmmmrrrrrrooo 000"

Comp = “wSw2d2 2n203a2t2Tm3r6o3 203"

In fact, BWT was originally developed as a compression algorithm.

Reconstructing S from BWT: LF mapping

S=ACAACGTS

—

NCAACG
NCGTSA
CAACGT
CGTSAC
ANACGTS
GTSACA
[SACAA
SACAAC

If we have L, i.e.
BWT(S), we can
get F just by
sorting it 2

T 0 00> 55 o]
Q@B @ H

< o U N D P W o
G2) B B Uy () H

H QOQQX ¥ @ n

Reconstructing S from BWT: LF mapping

S=ACAACGTS

Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T)inFisthesameasinL

HQOQQ P B 0
QP @ d -

Reconstructing S from BWT: LF mapping

S=ACAACGTS

Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T)inFisthesameasinL

HQOQQ P B 0
QP @ d -

Reconstructing S from BWT: LF mapping

Key property 2: The order of each C (also
each A, G, T)in FisthesameasinL

S=ACAA GTS$
F L
The Cs in the F column are

SACAACGT sorted according to the parts
AACGT $AE of the string that follow them
ACAACGTS
ACGTSACA The Cs in the L column are

AACGTSA also sorted according to the

GTSACAA parts of the string that follow

p— them

GTSACAAC

TSACAACG

Reconstructing S from BWT: LF mapping

Key property 2: The order of each A (also
C,G,T)inFisthesameasinL

S=ACAACGTS
F L

The As in the F column are
SACAACGT sorted according to the parts
AACGTSAC of the string that follow them
ACAACGTS
ACGTSACA The As in the L column are
CAACGTSA also sorted according to the
CGTSACAA parts of the string that follow

them
GTSACAAC

TSACAACG

Reconstructing S from BWT: LF mapping

$ must be

the last F L
character, —Jp $ T
start here /

Key property 1: If F[i]=X and L[i]=Y, then the
string YX must appear in S

Key property 2: The order of each A (also
C,G,T)inFisthesameasinL

S=.TS
S=..GTS
S=.CGTS
=.ACGTS
=_.AACGTS
S=.CAACGTS

=.ACAACGTS

PQ\(SQVJ ch S

it

.—-\/

E = Sd\iols‘jr\g

Finish Handout 2

dito 4 v e

-

— —
—

FM-Index data structure

FM-Index: data structure for pattern matching

m Set of auxiliary data structures computed from the BWT of a string S
m The FM-Index consists of 3 parts:

FM-Index: data structure for pattern matching

m Set of auxiliary data structures computed from the BWT of a string S
m The FM-Index consists of 3 parts:

(a) The BWT of S, i.e. the L column of 7*°rt¢d(S)
(b) M|c], the first index of ¢ in F' (note that F' is actually not part of the FM-Index)

(c) occ(e,), the number of times ¢ occurs in L[1 - - - 7], inclusive

FM-Index: data structure for pattern matching

m Set of auxiliary data structures computed from the BWT of a string S

m The FM-Index consists of 3 parts:

(a) The BWT of S, i.e. the L column of 7*°rt¢d(S)
(b) M|c], the first index of ¢ in F' (note that F' is actually not part of the FM-Index)

(c) occ(e,), the number of times ¢ occurs in L[1 - - - 7], inclusive

m The suffix array A is not technically part of the FM-Index, but we will
need it for the last step of finding out where pattern P occurs in the

original string S
m A[i] is the index of F[i] in the original string

Example: S = abaabas, P = aba

1234567
i [P L | A ooo($) ocola) ocolb)
1 Sy ay
2 a, b,
3 a, b,
4 as as
S Ay S,
6 by as
'/ b, a

Step 1: compute the BWT of S

Example: S = abaabas, P = aba

1234567
i [F L[A L ocotd) [occla) oceld)
L | 3y a; |7
2 a, b, | 6
3 a, b, | 3
4 as a, | 4
5 a, SE Ik
6 by as | 5
7 b, a, | 2

/

Step 2: compute the suffix array, where A[i] = index of F[i] in the original sequence

Example: S = abaabas, P = aba

1234567
i [F L | A]ooc($) ocola) ocolb)

1 Sy a; 0
2 a, b, © 0
3 a, b, 3 0
4 as a, 4 0
5 ay S| L 1
6 by as O 1
7T b, a, 2 1

\

Step 3: compute the occurrence table for each character ¢ (# times c in L[1...i])

Example: S = abaabas, P = aba

1234567
i |F L A occ$) | oce(a)] oce(b)
1 S1 a; |/ 0 1
2 aq b, © 0 1
3 a b, 3 0 1
4 as a, 4 0 2
S dy S 1 1 2
6 b az 9 1 3
/ b, a, 2 1 4
\

Step 3: compute the occurrence table for each character ¢ (# times c in L[1...i])

Example: S = abaabas, P = aba

1234567
T L A occi$)] occle)| ocold)
1 Sy a; 0 1 0
2 a4 b, © 0 1 1
3 a, b, 3 0 1 2
4 as a, 4 0 2 2
5 ay S, 1 1 2 2
6 by as 5 1 3 2
7 b, a, 2 1 /1 2

\
c

Step 3: compute the occurrence table for each character ¢ (# times c in L[1...i])

Example: S = abaabas, P=a

123456
i F L | A locc$) occ(a) | occlb)
1 Sy a; 0 1 0
sp(@a) —s/ 2| [a, b, 6 0 1 1
3 |ay b, 3 0 1 2
4 as a, 4 0 2 2
ep(@a)—> 5 | ay s, 1 1 2 2
6 Ib_l as; 5 1 3 2
7 Db, a, 2 1 4 2

Step 4: for pattern P, start with its last char and compute the start and end points

Example: S = abaabas$, P = dbal
1234567

i |F L | A |oce($)]ocea) | oce(b)
L7 0 1 0

1 $1 a
3 0 -> 2 means we must
: ! ¢ 0 1 I 3 have seen b, and b, in
3 a @ 3 0 1 2 the L column
4 as do 4 0 % 2
5 dg Sl 1 1 2 2
6 Dby az 9 1 3 2
/ b2 a4 2 1 4 2

Step b: for each new character, find the correct number of occurrences in L

Example: S = abaabas$, P = dbal
1234567

i |F L | A |oce($)]ocea) | oce(b)
L7 0 1 0

! > 2 3 Find where b, and b,
2 di @ 6 O 1 1 j are in the F column,
3 a, | 3 0 1 2 and repeat the process
4 1a; a,| 4 0 2 2

S ay S| 1 1 2 2

6 b17 a, 5 1 3 2

'/ b, a, 2 1 /| 2

Step b: for each new character, find the correct number of occurrences in L

Example: S = abaabas, P=
12345067

i F LA occ(a) | oce(b).
L | 84 0
2 a, 0 1 1
3 a, 3 0 1 2
4 a, 4 0 2 2
5 a, 1 1 2 2
spiba)—>| 6| [b, a, 5 1 3 2
ep(ba)—>| 7/ 2 ay 2 1 4 2

Step b: for each new character, find the correct number of occurrences in L

Example: S = abaabas$, P = dbal
1234567

i |F L | A |oce($)]ocea) | oce(b)
L7 0 1 0

1 $1 a
2 aq b, 6 0 1 1
3 a, b, 3 0 1 2
4 a, a, 4 0 2 2
o) ay S 1 1 2 2
3 2 -> 4 means we must
6 |b; ei 3 1 3 5 2 have seen a; and a, in
he L column
7 |b, @, 2 1 4 2 !
/)

Step b: for each new character, find the correct number of occurrences in L

Example: S = abaabas$, P = dbal
1234567

i |F L | A |oce($)]ocea) | oce(b)
L7 0 1 0

1 Sy a

2 0 1 1

3 0 1 2

4 0 2 %

0 1 2 3 2 Find where a; and a,

0 1 3 2 are in the F column,
3 done since P ended

] 1 4 2

Step b: for each new character, find the correct number of occurrences in L

Example: S = abaabas, P =[abal

1234567
i |[F L | A jocc$)] occ(a) | oco(b)

L | 3y a; '/ 0 1 0

2 | &y b, 6 0 1 1

3 a, b, 3 0 1 2
sp(aba) —>[4] [a; 4 022 O e nausive
ep(aba)—> 5| |a, S, | 1 2 2

6 b, a; 5 1 3 2

Wl a, 2 1 4 2

Step 6: when we reach the end of P, we should have the start/end pointsin F

Example: S = gbalabals, P =[gbal
1234567

0 1 0

Use A (suffix array) to
find the original
locations of Pin S

0
0
0
1
1
1

e NP
NI NO TR O T O TN O T

Step 7: we are not truly done until we find the locations in the original string!

BWT pattern matching algorithm

Base case: find the start point (sp) and end point (ep) of the last character in P (inclusive, so we
subtract 1 from the end point):

sp(c) = M|c], ep(c) = M|char alphabetically after ¢] — 1

Recursion:

sp(co) = M|c| + occ(e,sp(o) — 1)
ep(co) = M|c] + occ(c,ep(o)) — 1

i,(// 6’? ECj — /\/\\[V\Q\Lsr C\/‘\a\\’ AV\M@AK"““‘IK“/}\

G e

o Vot
AT o N D

\:§\3[Q\Q"1 = MEQ s
Splewy o M (<

Q<Q , SP NL\)
i o

> QF(W>> &

Handout 3

Handout 3 example: S = barbara$s, P=Dba

o J o U1 b ow DB

123450673

i |F L | A loce($) oce(a) | oce(b) | oco(r)
S a,

Work with a partner!

dq Iy
a, b, 1) Fill ina column for A
as well

as b,

b o 2) Tryto come up with a
. 2 formula for sp and ep

b, 54 in terms of M and occ

Iy o

Handout 3 example: S = barbaras, P=ba

123450673
i | F L | Aocc($) occ(@) occ(b) occ(n)
1 5, a; 8 0 1 0 0
2 a4 r{ 7 0 1 0 1
3 a, b; 5 0 1 1 1
4 a, b, 2 0 1 2 1
5 b r, 4 0 1 2 2
6 b, $; 1 1 1 2 2
7 I, a, 6 1 2 2 2
8 1, a; 3 1 3 2 2

Handout 3 example: S = barbaras, P=ba

i |F L | A |occ($) | occ(a) | oca(b) | oce(r)
L |9y a; 8 0 1 0 0
- L r o r
3 a, b; 5 0 1 1 1 5 1
4 a, b, 2 0 1 2 1 3 5
5 by r, 4 0 1 2 2 b 5
6 b, S, 4 1 1 2 2 - 7
7|y a, 6 1 2 2 2
M[c] is the first index
8 1, as 3 1 3 2 2 of charactercin F

(Store instead of F)

Handout 3 example: S = barbaras, P=ba

i |F L | A locc($)] oce(a)] occ(b) | oce(r)
1 S a, 8 0 1 0 0
= | S . ——
3 ao b, 5 0 1 1 1 S 1
41 la; b, 2 0 1 2 1 3 5
S by r, 4 0 1 2 2 5 5
6 b, S, 4 1 1 2 2 r 7
'/ r a, b6 1 2 2 2
M[c] is the first index
8 1, sl | S 1 3 2 2 of character cin F
(Store instead of F)
sp(a) =

@
S
2
I
BN

Handout 3 example: S = barbara$s, P=Dba

123456773
i JF L | Alocc($) occa) | occ(b) | oce(r)

L |9y a; 8 0 1 0 0

2 |a; r.| 7 0 1 0 1
3 |a, b,| 5 0 1 1 1 5 1

4 la; b,| 2 0 1 2 1 3 5

5 r, 4 0 1 2 2 m .

6 s, 1 1 1 2 2 . .

P a, 6 1 2 2 2

M[c] is the first index

3 I, az 3 1 3 2 2 of character ¢ in F

(Store instead of F)
sp(ba) = M[b] + # b’s we saw right before the first a

ep(ba) = M[b] + # b’s we saw up until the last a

Handout 3 example: S = barbaras,
12345678
i |F L | A |occ($)]occ(a) | ocelb) | oce(r)
1S, a, 8 O 1 0 0
2 |a; r{| 7 0 1 0 1
3 |a, b 5 0 1 1 1
4 |a, b,| 2 0 1 2 1
5 r, 4 0 1 2 2
6 s, 1 1 1 2 2
7 T a, 6 1 2 2 2
8 r, SO I T 3 2 2

sp(ba)=5+0
ep(ba) =5 + 2 - 1 (subtract 1 since we are being inclusive)

P = ba

S 1
a 2
b S
r '/

Mi[c] is the first index
of charactercin F
(Store instead of F)

Handout 3 example: S = barbaras, P=ba

i |[F L | A oco($)] ocea) | ocelb) | oca(r)
1 S a, 8 0 1 0 0
L anlo 0+ 1%
3 ao b, 5 0 1 1 1 S 1
4 a, b, 2 0 1 2 1 3 5
9 b, r, 4 0 1 2 2 5 5
6! |b, S, 4 1 1 2 2 r 7
] r a, b6 1 2 2 2
M[c] is the first index
8 1, as 3 1 3 2 2 of charactercin F
(Store instead of F)
sp(ba) =

Handout 3 example: S = barbaras, P=ba

12345678

i |F L | A oco($) occ@) | oco(b) | oce(r)
L |8y a; 8 0 1 0 0
3 a, by 5 0 1 1 1 5 1
4 ag b, 2 0 1 2 1 a 2
5/ |b; r, | 4 0 1 2 2 b 5
6| |b, S. |1 1 1 2 2 - 7
| gy a, 6 1 2 2 2
SE a; 3 1 3 2 2
sp(ba) = Use A to find locations

5
ep(ba) =6 in original string

SUha TR « ol o008
|
T
o L) i M Db \ v GCC<\O/€P<°\>>

N

G el 2 &

Pattern matching with BWT

Setup time O(N)
Search time O(M)

Storage space O(N)
* O(1)to store F (i.e. M)
e O(N)to store L (i.e. BWT(S))
e O(N)to store A
e O(N|XZ]|) to store OCC ("checkpointing” extension allows you to
store only part of OCC, without increasing complexity).

Inexact matching can be implemented in a similar way to inexact
matching with little extra cost (as long as few mismatches)

Summary

Algorithm Setup time Lookup time Storage space

Boyer-Moore
k-mer hash table O(N) O(M) O(N)
BWT/FM-index O(N) O(M) O(N)

But, in practice, for the read mapping problem, BWT approaches have turned
out to be the most efficient. Aimost all sequence data is processed with a
program called bwa which uses BWT to map.

Brief history of BWT and read mapping application

1994, BWT introduced (as a compression algorithm)
* Burrows, M. and Wheeler, D.J. (1994) A block-sorting lossless data compression
algorithm. Technical report 124, Palo Alto, CA, Digital Equipment Corporation.

2000, FM-index for fast searching
* Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with
applications. In Proceedings of the 41st Symposium on Foundations of Computer
Science (FOCS 2000), IEEE Computer Society, pp. 390-398.

2008, BWT-SW for sequence alignment
e Tam, C. K. Wong, S. M. Yiu (2008) Compressed indexing and local alignment of
DNA, Bioinformatics 24

2009, Bowtie for short read alignment (~19,000 citations to date)
 Langmead,B. Trapnell,C. Pop, M. Salzberg, S. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology

10:R25
« 2009, bwa (~46,000 citations in 2024)

* | Li, H. and Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform Bioinformatics 25: 1754-1760

