CS 364
COMPUTATIONAL

BIOLOGY

Sara Mathieson
Haverford College

Outline

m String search: finish Boyer-Moore algorithm

m Sequencing pipeline overview

m Read mapping

m Burrows-Wheeler Transform (BWT)

Boyer-Moore Algorithm

AW com\Pd\& ~ %1\ % = %
LN
W Simgk . RS \

S = AAATAAATAAATAAAT Good Case
AAA

skip

S = AAAAAAAAAAAATAAA
AAA

No skip
Bad Cases

No skip

Worst-case time complexity proportional to nm, where n is size of S and m is size of
the pattern, P. However, in practice average time complexity is very good.

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

Can we do better in these worst case situations?

ldea: there is information in “matches so far”

S = AAAAAAAAAAAATAAA
AAA

Found a mismatch at the left most position, where the pattern
has a T but we know that S has AAA to the right of that, so we
could never match in that region and can skip over it.

S = AAAAAAAAAAAAAAAA
+4 TAAA

Good Suffix Rule: Consider all the possible points in P
where mismatch can happen. For each kind of
mismatch, look left and see if the mismatch pattern
up to the current point can be found in P again.

@)

@)

123456789

: TATTCGGTT
: GCGACG

123456789

: TATTCGGTT
P:

GCGACG

*ACG

Notation: We use *X to mean “not X”
SoM=C,GorT

"ACG = CCG, GCG or TCG etc...

123456789
S: TATTCGGTT
P:GCGACG

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

123456789

S:## 4
P:GCGACG

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

123456789

S:## 4

P:

GCGACG

+1

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

12
S:H#4#
P:

3456789

1 1 1
GCGACG

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

123456789

S:H#4#
P:

1 1 1
GCGACG

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

123456789

S:## 4
P: ACG

+3

All possible mismatch patterns for P = “GCGACG”

Position of first mismatch of | Implied pattern in S | Action
P, scanning from right to left

6 "G move |
0 ~CG move J
4 "ACG move 3
3 "GACG move J
2 ~"CGACG move D
] "GCGACG move)

Exercise: P = “TAAAA”

Position of first mismatch of P,
scanning from right to left

Implied pattern in S

Action to be taken

P[5] ~A increase offset by 4
P[4] ~AA increase offset by 3
P[3] ~"AAA increase offset by 2
P[2] ~"AAAA increase offset by 1
P[1] ~"TAAAA increase offset by 5

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

Combine the two rules to complete the
Boyer-Moore algorithm

Match P to S, from right to left starting at some offset
position of S. If a mismatch is found compute

shift = max(bad character rule, good suffix rule)

Increase offset by shift and start the matching again from
the right most position of P.

Intro CompBio Biol Models, (¢) Junhyong Kim, 2018

Good suffix rule worksheet

Boyer-More Complexity

Best case”?

S = AAACAAACAAACAAAT
AAMA

Maximum num comparisons: O(N/M)

Gets more efficient as the pattern gets longer!

Average case?

S = AGTCTAGCTAGCATCGACTACGAC
ACGT

ACGT
ACGT

Average num comparisons: O(N)

Small alphabet

S = AGTCTAGCTAGCATCGACTACGAC
ACGT

ACGT
ACGT

Large alphabet

S = ASDFAJINSDAWZA#XXKXLS#%K
XZAK

XZAK
AZAK

Bigger skip with larger alphabet

Worst case?

No skip: O(N)

Worst case?

S: AAAAAAAAAAAAAAAAAAAA
P: AAAAA

No skip, no mismatch: O(NM)

* Worst case is O(N) if the pattern does not appear in the text

Remarks on Boyer-Moore

m O(N/M) -> Becomes more efficient, the longer the pattern
m Small memory complexity.

m Not as efficient when we have a small alphabet size

Remarks on Boyer-Moore

Boyer-Moore and variations are good general search algorithms

At the relatively modest cost of O(M) preprocessing, they produce
substantial speed-ups over the naive algorithm

This is hard to see abstractly, but in practice they have very good
performance (i.e. the average case is close to the best case)

When you hit Ctrl-F in a website or text document, it’s running a
variation of Boyer-Moore under the hood

Extra reading

Fast String Searching

ANDREW HUME
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, U.S A.

AND

DANIEL SUNDAY
Johns Hopkins University | Applied Physics Laboratory, Johns Hopkins Rd., Laurel, MD 20723, U.S A.

SUMMARY

Since the Boyer-Moore algorithm was described in 1977, it has been the standard benchmark for the
practical string search literature. Yet this yardstick compares badly with current practice. We describe
two algorithms that perform 47% fewer comparisons and are about 4.5 times faster across a wide range

of architectures and compilers.
These new variants are members of a family of algorithms based on the skip loop structure of the pre-

ferred, but often neglected, fast form of Boyer-Moore. We present a taxonomy for this family, and de-
scribe a toolkit of components that can be used to design an algorithm most appropriate for a given set of
requirements.

KEY WORDS String searching Pattern matching Boyer-Moore

For optimal performance we start to care about 1) constants 2) characteristics of the data

Final thought...

* We sped up our algorithm by doing some pre-
processing of the pattern

 Often (e.g. read mapping), we want to match a
large number of patterns (reads) to a search
string (reference genome) that doesn’t change

* |s there some way we could speed this up by
pre-processing the search string?

Sequencing Pipeline

/[~ st
—

Fragments Add adaptors Attach to flowcell

- ﬁ. B .iﬁ\' l,'\n _ I‘I
M- -_ﬂ—>_,. .'_ﬂ'—>'|. n

Bind to primer PCR extension Dissociation

Il — 0\1> ?:‘:

Cluster formation / . .
777777

Sequencing Signal scanning InTech open science

Read Mapping

Read mapping

Long reference genome

AGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT...

CTTTEATTCCTECT TTATTTATCECACCTRC
CTGCCTCATCCTA
Many short reads to align Reference doesn’t change so

lets process it once (slow) but
then hopefully it will be fast
to map each read.

Bowtie and BWA (posted reading)

m First practical read aligners to use the

Fast and accurate short read alignment with

Burrows—Wheeler transform
Heng Li, Richard Durbin ™ Author Notes

Bioinformatics, Volume 25, Issue 14,|15 July 2009] Pages 1754-1760,
https://doi.org/10.1093/bioinformatics/btp324
Published: 18 May 2009 Article history v

] Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome

Ben Langmead ¥4, Cole Trapnell, Mihai Pop and Steven L Salzberg

Genome Biology 2009 10:R25
https://doi.org/10.1186/gb-2009-10-3-r25 © Langmead et al.; licensee BioMed Central Ltd. 2009
Received: 21 October 2008 = Accepted: 4 March 2009 = Published:}4 March 2009

Comparison of Bowtie and BWA

Table 2.

Evaluation on real data

Program Time(h) Conf(%) Paired (%)

Bowtie 5.2 84.4 96.3
BWA 4.0 88.9 98.8
MAQ 94.9 86.1 98.7
SOAP2 3.4 88.3 97.5

The 12.2 million read pairs were mapped to the human genome. CPU time in hours on a single core
of a 2.5 GHz Xeon E5420 processor (Time), percent confidently mapped reads (Conf) and percent
confident mappings with the mates mapped in the correct orientation and within 300 bp (Paired),
are shown in the table.

Pipeline overview

Reference
sequence

format
€.g. a genome sequence

format

Sorted
e.g. RNA-Seq or BAM

WGS ‘re-sequencing’ data

SAMtools BCFtools

oo 0—0

Credit: Dan Bolster (EBI)

No such thing as a free lunch

None O(N)

Preparation time

Storage space Running time

None O(N) O(NM) O(M)

Nalve search

Hash tables and BWT

k-mer hashing

AGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT

AGTA: 1

Recall: k-mer is a string of
length k. We’ll write things
like 4-mer, 32-mer etc... to
refer to specific lengths

k-mer hashing

AGTATICTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT

AGTA: 1
GTAT: 2

k-mer hashing

AGTATCIGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT

AGTA: 1
GTAT: 2
TATC: 3

k-mer hashing

AGTATCTGTCTGTGATTCCTGCCTCATCCTATTATTTATCGCACCTCTGTTCAATATT

AGTA:
GTAT:
TATC:
ATCT :
TCTG:
CTGT:
TGTC:
GTCT:
TCTT:

Collision!

O O J o Uik W N -
~
N©)
~
D~
NN)

k-mer hashing

AGTATCTGTCIGTGATTCCIGCCTCATCCTATTATTTATCGCACCTCTGTTCAATATT

AGTA: 1 Now, suppose | want to look up:
GTAT: 2

TATC: 3 GTCTGTGATTCC

ATCT: 4

TCTG: 5,9,42

CTGT: ©

TGTC: 7 1. Take first k-mer in pattern
GTCT|: |8 2. Look up positions in index
TCTT: 9 3. Check each position for match

How many different k-mers are there?

Burrows-Wheeler Transform (BWT)

\Q\bc\\f\o\\/\
iE \DO\V\C/\\/\O\ '~

,,
|

B o o o o]

