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Outline

e Midterm 2 Review

— Disparate impact

* Less focus

— tSNE
— t-tests
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How can we tell if an algorithm is biased?

D: dataset with attributes X, Y

* X'is protected
*Yis unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

Indirect discrimination: C = f(Y)
* but strong correlation between X and Y

* Ex: housing loans
* Ex: programming experience
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What if the overall distances
are not meaningful?

Focus on your neighbors
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tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*
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\ | *Note: the actual algorithm uses notions of
o . probability (i.e., probability of finding Y at
Original distance some distance from X). | use notion of

distance as a proxy
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tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*
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tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*

A

Difference in large
distances tend to get
REALLY squished

Differences in small distances tend to

get squished ,\

These two in combination tend to

. . emphasize intermediate distances
Original distance emphasizing clusters

X
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“swissroll data” Dinoj Surendran



PCA
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Preserve structure

Preserve distance

How to visualize data always depends on the data, and the question

There is rarely if ever a single correct approach
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Modern west Eurasians -
& Armenian & English * Abkhasian * Libyan_Jew = Croatian .'n
® [ranian ® French " Adygei @ Moroccan_Jew 4 Czech m ®
4 Turkish 4 |celandic 4 Balkar + Tunisian_Jew + Estonian
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