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Lab 7 getting started

* |tis helpful to have our data be zero-centered,
so we will subtract off the mean

* |tis also helpful to have the features be on the
same scale, so we will divide by the standard
deviation

* We will compute the mean and std with
respect to the training data, then apply the
same transformation to all datasets



Lab 7 getting started

* |Input is now itself a multi-dimensional array

* For images, often the shape of each image will
be (width, height, 3) for RGB channels

* Need to “flatten” or “unravel” for fully
connected networks
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Lab 7 getting started

n this class, we have considered

stochastic gradient descent, where one data
point is used to compute the gradient and
update the weights

e Onthe
where
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flipside is batch gradient descent,
we compute the gradient with respect
ne data, and then update the weights

le ground uses mini-batches of

examp

es before updating the weights. This is

the approach we will use in Lab 7.



Outline for April 8

Choice of weight initialization

Regularization

Autoencoders and unsupervised pre-training
Begin: convolutional neural networks

e Lab 7 check-in (fully connected NN part) on WED

* Lab 7 due Monday (week from today)
e Office hours TODAY 12:30-2pm



Outline for April 8

* Choice of weight initialization



Weight initialization

* All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the

weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values



Weight initialization

* |ssue: nodes with more randomly initialized
inputs will have a higher variance in their
output

e Solution: divide by the sqrt(n) where n is the
“fan-in” (number of inputs)

http://cs231n.github.io/neural-networks-1/




Outline for April 8

* Regularization



More hidden units can contribute to overfitting

3 hidden neurons 6 hidden neurons 20 hidden neurons

Larger Neural Networks can represent more complicated functions. The data are shown as circles colored by their class, and
the decision regions by a trained neural network are shown underneath. You can play with these examples in this ConvNetsJS
demo.

Image from: http://cs231n.github.io/neural-networks-1/




However! It is always better to use a larger
network and regularize in other ways

A =0.001 A=0.01

The effects of regularization strength: Each neural network above has 20 hidden neurons, but changing the regularization
strength makes its final decision regions smoother with a higher regularization. You can play with these examples in this
ConvNetsJS demo.

Image from: http://cs231n.github.io/neural-networks-1/
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Outline for April 8

* Autoencoders and unsupervised pre-training



What was this breakthrough in deep learning?
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Goal: find a function between input and output
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input data

Y, (glasses)
Y, | (smiling)

Y, | (eyesize)

parameters




First idea: one hidden layer
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Second idea: more hidden layers (“deep” learning)




Flatten pixels of image into a single vector
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Detour to autoencoders




Detour to autoencoders
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Detour to autoencoders
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Use unsupervised pre-training to find a function
from the input to itself

input data layer 1 reconstructed input




Hidden units can be interpreted as edges
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Now: throw away reconstruction and input
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input data layer 1




Now: throw away reconstruction and input
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Then repeat the entire process for each layer
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Then repeat the entire process for each layer




Then repeat the entire process for each layer




Then repeat the entire process for each layer
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In the last layer, use the outputs (supervised)

Y, (glasses)
Y, | (smiling)

Y, | (eyesize)

parameters

= )
Q. i
g

layer 2




In the last layer, use the outputs (supervised)
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Finally, “fine-tune” the entire network!

~

input data

hidden
layer 1

Y, (glasses)
Y, | (smiling)

Y, | (eye size)

parameters




Outline for April 8

* Begin: convolutional neural networks
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