
CS66: Machine Learning Lab 6: Due April 5, 2019

SVM Problem Set

Names:

1. Prove that the geometric margin (physical distance between the point and the hyperplane) for a
given example (~xi, yi) and a given hyperplane (~w · ~x+ b = 0) is

γi = yi

(
~w

‖~w‖
· ~xi +

b

‖~w‖

)
We did a few of the steps in class – your task here is to explain those steps in your own words (a
picture would be very helpful) and fill in the missing steps.

2. The Lagrangian for our SVM problem is

L(~w, b, ~α) =
1

2
‖~w‖2 −

n∑
i=1

αi

[
yi(~w · ~xi + b)− 1

]
After we take the gradient with respect ~w and the derivative with respect to b, we end up with
these two equations

~w =
n∑

i=1

αiyi~xi ,
n∑

i=1

αiyi = 0

Use these equations to demonstrate that

L(~w, b, ~α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαj~xi · ~xj

(The RHS is what we redefine as W (~α), since it no longer depends on ~w and b.)

3. Why is the “max of the mins” always less than or equal to the “min of the maxs”? In other words,
let f(x, y) be a function of two variables – why is

max
x

min
y
f(x, y) ≤ min

y
max

x
f(x, y) ?

Hint: imagine a matrix of f(x, y) values, with x denoting the row and y denoting the column.
Think about first fixing the row and finding the min over all y values in that row. Then do that
for each row and take the max. Then reverse the steps.

4. Challenge (not optional but worth few points): After finding the optimal alpha values α∗
i (for

i = 1, · · · , n), we can find the optimal weight vector ~w∗. Demonstrate that the optimal bias is

b∗ = −1

2

(
max

i:yi=−1
~w∗ · ~xi + min

i:yi=1
~w∗ · ~xi

)
Hint: think about the constraints in our optimization problem after we forced γ̂ = 1. The bias
only shifts our hyperplane up and down (doesn’t change its direction), so we want to move it to
the “middle” of the support vectors from each class.
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5. The goal of this question is to gain some intuition about SVMs through a concrete example.
Consider the 6 examples shown below from two classes (+1, −1).

x1

x2

x1 = (1,5) x2 = (4,5)

x3 = (5,3)

x5 = (1,0)

x4 = (3,-2)

x6 = (-2,-1)

(a) Using your knowledge of what the maximum margin hyperplane means, draw the “best”
hyperplane on the figure above.

(b) What is an equation (in terms of the axes x1 and x2) that describes this optimal hyperplane?

(c) Which of the ~xi’s are support vectors?

(d) Given that the weight vector is orthogonal to the hyperplane, write ~w as

~w = a

[
w1

w2

]
for some concrete w1 and w2 and some unknown constant a. In other words, find the direction
of the weight vector.

(e) Using the fact that the functional margin γ̂ = 1 (i.e. γ̂i = 1 for support vectors), solve for
this constant a and the bias b. At this end of this part you should have numerical values for
the optimal weight vector ~w∗ and the optimal bias b∗.

(f) Finally, using the fact that ~w =
∑n

i=1 αiyi~xi and
∑n

i=1 αiyi = 0, find the optimal α∗
i for

i = 1, · · · , 6.
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