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Outline: April 25

* Lab 6 notes
* Finish Genome-Wide Association Studies (GWAS)

* Begin: machine learning for biology

Notes:
 Hand back project proposals today
e Office hours TODAY 1-3pm
* Midterm 2 in-lab on Thursday (make/bring cheat-sheet)



Lab 6 Notes

* n = number of samples/sequences
* m = number of sites

* Runtime of naive algorithm: O(nm?)
* Need to consider all pairs of sites => O(m?)
e Containment/disjoint linear in n by using a dictionary

* Runtime of Gusfield’s algorithm: O(nm)

* Each step (radix sort, transform rows, build trie) considers
each entry in the matrix (n x m)

* Naive is NOT exponentially faster than Gusfield! It is
qguadratic in m

 Recombination is the reason we don’t expect a perfect
phylogeny when considering many sites for samples
from the same species



Fine-Mapping
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Height GWAS

ZBTB38: Zinc Finger And BTB Domain Containing 38

GDF5: Growth differentiation factor 5

THSHCTING

697 independent SNPs significantly associated with height — Wood et al. 2014
Together explain about 15% of the phenotypic variance

Slide: modified from lain Mathieson



BMI GWAS
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32 independent SNPs explain 1.45% of the variance in BMI — Speliotes et al. 2010

Slide: modified from lain Mathieson



Type 2 Diabetes GWAS

islet-centric model
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63 independent loci explain 5.7% of the variance — Morris et al. 2012
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Schizophrenia GWAS

o \ Major Histocompatibility Complex - a
region with many genes that produce cell
surface proteins, important for immunity
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108 independent loci explain 3.4% of the variance — Ripke et al. 2014

Slide: modified from lain Mathieson



Missing Heritability?

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a lighton
six places where the missing loot could be stashed away.

Nature 2008



The bigger the sample size, the more variants you find
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Simons & Sella 2018

Slide: modified from lain Mathieson



Missing Heritability?

“Missing heritability” is not really missing

Mostly just hidden in very small effects
that GWAS are not big enough to detect

May be some hidden in epistatic effects or
gene-environment interactions

Heritability estimates might be a bit too high

Slide: modified from lain Mathieson



Almost all GWAS are carried out in
European-Ancestry populations

PERSISTENT BIAS

Over the past seven years, the proportion of participants in genome-wide

association studies (GWAS) that are of Asian ancestry has increased.
Groups of other ancestries continue to be very poorly represented.

2009

373 studies
1.7 million samples

96%

European
ancestry
Asian
Other non-
European

49, Non-
European
ancestry

Slide: modified from lain Mathieson

2016

2,511 studies
35 million samples

81%

European
ancestry

199%, Non-
European
ancestry

14

3% %
of all 2009 of all 2016
samples samples

BREAKDOWN

Proportion of non-European
ancestry samples

Asian
ancestry
| |
African
ancestry

Mixed
ancestry

Hispanic & Latin
American ancestry

Pacific
Islander

Arab & Middle
Eastern
| |
Native
Peoples

Terms for ethnicity are those used in the 37
GWAS Catalog. Some have changed 4
between 2009 and 2016 as sampling
057 has increased. Samples of European
% origin have the most specific
descriptions of population ancestry.

1%
0.159%
o0e%, [ 0545
0.06% 0.289%
0.08 0
enature & 0.05%

Popejoy & Fullerton 2016



European GWAS results do not translate
to non-European ancestry populations
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Ware et al 2018

Slide: modified from lain Mathieson



How successful have GWAS been?

Twelve years.

Thousands of studies

Tens of thousands of researchers

Tens of millions of patient-participants

Billions (?) of dollars

Slide: modified from lain Mathieson



How successful have GWAS been?

GWAS

New Opportunities
G——— Extremely successful!

. . X Find connections
Find associations with .
between traits

traits and diseases

— . . .
1 Not very successful at all Predict genetic risk

Understand function of those
associations i.e. “find genes” Understand complex

trait evolution

1 ¢ Hasn’t really happened
Develop drugs

Profit

Slide: modified from lain Mathieson



summary

Genome-wide association studies:

Map common/low frequency variants
associated with traits/disease 7
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The bigger the sample size (more people)
the smaller the effects you can detect
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Machine Learning in Biology



What is machine learning?

A child can see one giraffe and
then be able to identify giraffes
in many different contexts

Images: Wikipedia, San Diego Zoo, National Geographic, CNN.com



Can we train a computer to do the same thing?

Images: Wikipedia, San Diego Zoo, National Geographic, CNN.com



Can we train a computer to do the same thing?

How can we
distinguish between
similar objects?

Images: veriy.com



What is machine learning?

* One flavor of machine learning is
classification

Example: bagel vs. dog

e Goal: separate examples into
(many) different classes )\

Images: veriy.com



Why do we care?

* Email filtering (spam vs. not-spam)

l

From: cheapsales@buystufffromme.com
To: ang@cs.stanford.edu
Subject: Buy now!

Deal of the week! Buy now!
Rolex wé4tchs - $100
Medlcine (any kind) - $50
Also low cost MOrgages
available.

From: Alfred Ng
To: ang@cs.stanford.edu
Subject: Christmas dates?

Hey Andrew,

Was talking to Mom about plans
for Xmas. When do you get off
work. Meet Dec 222

Alf

243
MR. JOHN JONES
SN0 ST, .7 oae 900€ [ 201

PAY TO THE Wm Fonmah’ul I $ lw N 55

‘ORDER OF

One Hundred Dollars and

B FIRST BANK OF WIKI o
Victoria Main Branch

» 1425 James St., P.O. Box 4001 g

Victoria (B.C.) V8X 3X4

MEMO I nl'aihnl) [R——— ressvassmsserame MP

L3 100005mLg3el L2 3ml GEmTNr
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* Handwriting recognition (digits in a check)




Why do we care?

AlphaGo: plays humans never thought of

090
Self-driving cars are in our present and future é(@j AlphaGo

Images: Scientific American



Why do we care?

* Tumor detection (benign vs. malignant)

B

“On Breast Cancer Detection: An Application
of Machine Learning Algorithms on the
Wisconsin Diagnostic Dataset”



ML and “Big Data”

* As datasets become larger and more complex, humans
can no longer make sense of them without machines

* Machine learning is in all of our lives and understanding
it will be increasingly valuable



Machine learning terminology

* Training: usually involves the program processing many
examples (from different classes) where we know the
“answer” or label, and learning how to separate them

 Testing: program classifies new examples



Machine learning terminology

* Supervised learning: a human (usually) has hand-
labeled the training examples, so it’s easier for the
computer to learn differences

* Unsupervised learning: data is unlabeled (no class
information)



Machine Learning Methods



Regression

Training data: vectors x
(independent variable) and
y (dependent variable)

Images: Wikipedia



Regression

Training data: vectors x
(independent variable) and
y (dependent variable)

Testing goal: given a new x
value, can we predict y?

Images: Wikipedia



Logistic regression for classification

Probability of passing exam versus hours of studying

Probability of passing exam

Hours studying

Images: Wikipedia



Logistic regression for classification

Probability of passing exam versus hours of studying

am

Probability of passing ex

Hours studying




Support Vector Machines (SVM)

Idea: for 2 (or more classes),
try to create the “best”
boundary between them

New examples can be
classified based on which side
of the hyperplane they fall on

Images: medium.com

Support
vectors

Support

T




Clustering (unsupervised learning)

Choose two
random data
points to be the
first means




Clustering (unsupervised learning)

Step 1 Step 2

Color each point
based on which
mean is closest,
then find means of
resulting clusters

adte et S

Images: Polymatheia



Clustering (unsupervised learning)

Repeat the
process until the
means are not
changing

Images: Polymatheia

Qtep 1

Qtep 2

Qtep 3
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Clustering (unsupervised learning)

Repeat the
process until the
means are not
changing

Images: Polymatheia

Qtep 1

Qtep 2

Qtep 3
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Clustering (unsupervised learning)

Repeat the
process until the
means are not
changing

Images: Polymatheia

Qtep 1

Qtep 2 Qtep 3




Clustering (unsupervised learning)

Repeat the
process until the
means are not
changing

Images: Polymatheia

Qtep 1

Qtep 2 Qtep 3




HMMs form a class of machine learning
methods too

e Can be supervised (i.e. we know the hidden state
sequence for some examples, use that to infer
transition/emission probabilities)

* Then estimate hidden state sequence for new

unlabeled data
OO -C
O © (O

e Can be unsupervised (i.e. we don’t know the hidden
state sequence and we want to learn/predict this
latent variable)

Images: Cross Validated



Recent trends in ML

* Inspired by how neurons are
connected in our brains, “deep
learning” has recently become
successful in many fields




Deep Learning

Deep learning for images

ONONONONORO)

input data

Y, (glasses)
Y, | (smiling)

Y, | (eye size)

parameters

Sara Mathieson
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Number of articles about deep learning over time

1000

8 800 2006: Hinton and Salakhutdinov 1
S make a break-through in
B initializing deep learning networks
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Deep Learning

Break-through: unsupervised learning, autoencoder

Sara Mathieson



Deep Learning

Break-through: unsupervised learning, autoencoder

1. Project data into a lower
dimension: z

h=o(Wx) (%)

WO

g\: vfg
A
/r 0\\
© (w)
%) Moy,

input

20




Deep Learning

Break-through: unsupervised learning, autoencoder

1. Project data into a lower
dimension: x

hj _ O(VVJ(l) . X) e - -

1
e \0
2. From reduced features, \‘Q"\ A“f
reconstruct: \\’w’ « »

Af\
— (W2 . h) ~W@

hidden

e NG

reconstructed

input
P input

20



Deep Learning

Break-through: unsupervised learning, autoencoder

p

hj B O(ij(l) .X) @ WO W®

1. Project data into a lower
dimension:

1
e \0
2. From reduced features, \‘Q"\ A“f
reconstruct: \\’\ "

0\ )
««&\
iy OGN .
3. Minimize objective

function: hidden
@ @
1 2
Jx( W) = 5 ‘ ’X —x* ‘ ‘ : reconstructed

nput
P input

20




Deep Learning

PCA vs. Autoencoder

Original image

21

Sara Mathieson



Deep Learning

PCA vs. Autoencoder

PCA
Original image reconstruction

21

Sara Mathieson



Deep Learning

PCA vs. Autoencoder

o PCA Autoencoder
Original image reconstruction reconstruction

21
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Deep Learning

Transform the input data

input data

Sara Mathieson 22




Deep Learning

Feature learning for hidden layer 1

v

Sara Mathieso 22



hidden
input data layer 1 reconstructed input

Sara Mathieson 22




Deep Learning

| ow-level features become the new data

layer 1

Sara Mathieson 22




Deep Learning

Feature learning for hidden layer 2

reconstructed
input

ara Mathieso




Feature learning for hidden layer 2

reconstructed
input

22




Deep Learning

High-level features become the new data

22

Sara Mathieson



Deep Learning

Last layer: supervised learning

Y, (glasses)
Y, | (smiling)

Y, | (eye size)

parameters

Sara Mathieson
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Deep Learning

Last layer: supervised learning

Y, (glasses)
Y, | (smiling)

Y, | (eye size)

parameters

Sara Mathieson
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Y, (glasses)

Y, | (smiling)

Y, | (eye size)

parameters

hidden
input data layer 1

Sara Mathieson 22




Application of deep learning to
population genetics



Motivation: demographic history of Drosophila

N, = 5,224,100
N, | =620
>
N, = 4,975,360 /
> €

Africa North America Europe

Demographic Inference Reveals African and
European Admixture in the North American
Drosophila melanogaster Population

Pablo Duchen, Daniel Zivkovi¢, Stephan Hutter, Wolfgang Stephan and
Stefan Laurent

GENETICS January 1, 2013 vol. 193 no. 1 291-301; https://doi.org/10.1534/genetics.112.145912




Motivation from Population Genetics

Main goal: population sizes and natural selection

Natural selection, in a nutshell:

Yum! Green beetles! Our favorite!

5-10 kyr 50-100 kyr 0.5-1 Myr 5-10 Myr

&
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Time (scaled in units of 2uT)

The complete genome sequence of a Neanderthal from the Altai
Mountains, Nature (2013)

INVITED REVIEW

Joint analysis of demography and selection Green beetles have been selected against, and brown

in population genetics: where do we stand and beef'” ha_"e "°"'"s"ed‘_ )

where could we go? University of California Museum of

JUNRUI LL*t HAIPENG LL* MATTIAS JAKOBSSON, § SEN LL$ PER SJODIN{ and Pa |eont0|0gy'5 “Understandi ng Evolution”
MARTIN LASCOUX*§
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Selective sweeps can cause a loss
of diversity




A Deep Learning Method for Population Genetics

Training data:

simulated datasets

400,000 datasets:

> » 2 500 bottlenecks

population size

» 160 regions/genome

Sara Mathieson

24




A Deep Learning Method for Population Genetics

Training data: simulated datasets

§ Ny 400,000 datasets:

X,

& > » 2 500 bottlenecks

3

3 T » 160 regions/genome

time

1. baseline effective population size: N, = 100, 000
2. n =100 individuals
3. L =100,000 bases per region

4. 75% of data for training and 25% for testing

24
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A Deep Learning Method for Population Genetics

Selection: four different classes

s O
Population Sizes 1 A A

-
O

O

O

A A
Population Sizes 2{ Je
*

O

* Al
Population Sizes 3 A
O A

* de novo mutation (hard sweep) A balancing selection (O standing variation (soft sweep)

= 4 selection classes

Sara Mathieson
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Compute statistics around selected site

/ region 2: 10-30kb \

A selected site A

N ! \

l \ l \

| | |

region 3: 30-50kb



A Deep Learning Method for Population Genetics

Summary statistics as features

» Number of segregating sites 3 stats
» Tajima’'s D 3 stats
» Folded site frequency spectrum (SFS) 150 stats
» Length distribution between segregating sites 48 stats
» ldentity-by-state (IBS) tract length distribution 90 stats
» Linkage disequilibrium (LD) distributions 48 stats
» Haplotype frequency statistics 3 stats

= 345 features total

26

Sara Mathieson



A Deep Learning Method for Population Genetics

A deep learning method for population genetics

population
sizes

ACTGGCTA
AGCTAGCTT
TAATCCGCA
g | selection
hidden layer 2
. layer 1
statistics
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