
Prof.	Sara	Mathieson
Spring	2018
Swarthmore	College

CS	68:	Bioinformatics

Outline:	April	25

• Lab	6	notes
• Finish	Genome-Wide	Association	Studies	(GWAS)
• Begin:	machine	learning	for	biology

Notes:
• Hand	back	project	proposals	today
• Office	hours	TODAY	1-3pm
• Midterm	2	in-lab	on	Thursday	(make/bring	cheat-sheet)

Lab	6	Notes

• n =	number	of	samples/sequences
• m =	number	of	sites
• Runtime	of	naïve	algorithm:	O(nm2)

• Need	to	consider	all	pairs	of	sites	=>	O(m2)
• Containment/disjoint	linear	in	n by	using	a	dictionary

• Runtime	of	Gusfield’s algorithm:	O(nm)
• Each	step	(radix	sort,	transform	rows,	build	trie)	considers	
each	entry	in	the	matrix	(n x	m)

• Naïve	is	NOT	exponentially	faster	than	Gusfield!	It	is	
quadratic in	m
• Recombination	is	the	reason	we	don’t	expect	a	perfect	
phylogeny	when	considering	many	sites	for	samples	
from	the	same	species

Fine-Mapping

Slide:	modified	from	Iain	Mathieson

Blue	lines	represent	
recombination	rate

Height	GWAS

Nature Genetics: doi:10.1038/ng.3097

Supplementary Figure 3

Manhattan plots.

Plots of (a) results obtained from meta-analysis after applying a single genomic control correction and (b) results obtained from
performing an approximate conditional and joint multiple-SNP analysis on the meta-analysis results. The red horizontal line in both
plots represents the genome-wide significance threshold of P = 5 × 10–8.

697	independent	SNPs	significantly	associated	with	height	– Wood	et	al.	2014
Together	explain	about	15%	of	the	phenotypic	variance

GDF5:	Growth	differentiation	factor	5

ZBTB38:	Zinc	Finger	And	BTB	Domain	Containing	38

Slide:	modified	from	Iain	Mathieson

BMI	GWAS

32	independent	SNPs	explain	1.45%	of	the	variance	in	BMI	– Speliotes et	al.	2010

Slide:	modified	from	Iain	Mathieson

Diabetes	GWAS	results

Type	2	Diabetes	GWAS

63	independent	loci	explain	5.7%	of	the	variance	– Morris	et	al.	2012	

TCF7L2:	Transcription	factor	7-like	2
Risk	allele	increases	T2D	risk	~40%	

McCarthy	et	al	2013

Slide:	modified	from	Iain	Mathieson

Schizophrenia	GWAS

108	independent	loci	explain	3.4%	of	the	variance	– Ripke et	al.	2014	

Major	Histocompatibility	Complex	- a	
region	with	many	genes	that	produce	cell	
surface	proteins,	important	for	immunity

Other	associations:	
Glutaminergic	neurons
Calcium	channels
Synaptic	plasticity
Dopamine	receptor	DRD2

Slide:	modified	from	Iain	Mathieson

Missing	Heritability?

Nature	2008

Simons	&	Sella	2018

The	bigger	the	sample	size,	the	more	variants	you	find

Slide:	modified	from	Iain	Mathieson

Missing	Heritability?

“Missing	heritability”	is	not	really	missing

Mostly	just	hidden	in	very	small	effects	
that	GWAS	are	not	big	enough	to	detect

May	be	some	hidden	in	epistatic	effects	or		
gene-environment	interactions

Heritability	estimates	might	be	a	bit	too	high
Slide:	modified	from	Iain	Mathieson

Almost	all	GWAS	are	carried	out	in	
European-Ancestry	populations

Popejoy &	Fullerton	2016
Slide:	modified	from	Iain	Mathieson

European	GWAS	results	do	not	translate	
to	non-European	ancestry	populations

Ware	et	al	2018

African-Americans European-Americans

Slide:	modified	from	Iain	Mathieson

How	successful	have	GWAS	been?

Twelve	years.

Thousands	of	studies

Tens	of	thousands	of	researchers

Tens	of	millions	of	patient-participants

Billions	(?)	of	dollars
Slide:	modified	from	Iain	Mathieson

How	successful	have	GWAS	been?
GWAS

Find	associations	with	
traits	and	diseases

Understand	function	of	those	
associations	i.e.	“find	genes”

Develop	drugs

Profit

Extremely	successful!	

Not	very	successful	at	all

Hasn’t	really	happened

Hasn’t	happened	at	all

Predict	genetic	risk

Understand	complex	
trait	evolution

New	Opportunities

Find	connections	
between	traits

Slide:	modified	from	Iain	Mathieson

Summary

Genome-wide	association	studies:

Map	common/low	frequency	variants	
associated	with	traits/disease

The	bigger	the	sample	size	(more	people)	
the	smaller	the	effects	you	can	detect

Do	not	tell	us	anything	about	function

Need	to	be	extremely	careful	about	
population	structure	and	multiple	testing

Slide:	modified	from	Iain	Mathieson

Machine	Learning	in	Biology

What	is	machine	learning?

A	child	can	see	one	giraffe	and	
then	be	able	to	identify	giraffes	

in	many	different	contexts

Images:	Wikipedia,	San	Diego	Zoo,	National	Geographic,	CNN.com

Can	we	train	a	computer	to	do	the	same	thing?

giraffe

Images:	Wikipedia,	San	Diego	Zoo,	National	Geographic,	CNN.com

Can	we	train	a	computer	to	do	the	same	thing?

Images:	veriy.com

How	can	we	
distinguish between	
similar	objects?

What	is	machine	learning?

• One	flavor	of	machine	learning	is	
classification

• Goal:	separate	examples	into	
(many)	different	classes

Example: bagel vs. dog

Images:	veriy.com

Why	do	we	care?
• Email	filtering	(spam	vs.	not-spam)

• Handwriting	recognition	(digits	in	a	check)
Images:	Wikipedia,	Matouš	Havlena

Self-driving	cars	are	in	our	present	and	future

Images:	Scientific	American

AlphaGo:	plays	humans	never	thought	of

Why	do	we	care?

Why	do	we	care?

• Tumor	detection	(benign	vs.	malignant)

Images:	The	New	Yorker

“On	Breast	Cancer	Detection:	An	Application	
of	Machine	Learning	Algorithms	on	the	

Wisconsin	Diagnostic	Dataset”

ML	and	“Big	Data”

• As	datasets	become	larger	and	more	complex,	humans	
can	no	longer	make	sense	of	them	without	machines

• Machine	learning	is	in	all	of	our	lives	and	understanding	
it	will	be	increasingly	valuable

Machine	learning	terminology

• Training:	usually	involves	the	program	processing	many	
examples (from	different	classes)	where	we	know	the	
“answer”	or	label,	and	learning	how	to	separate	them

• Testing:	program	classifies	new	examples

Machine	learning	terminology

• Supervised	learning:	a	human	(usually)	has	hand-
labeled	the	training	examples,	so	it’s	easier	for	the	
computer	to	learn	differences

• Unsupervised	learning:	data	is	unlabeled	(no	class	
information)

Machine	Learning	Methods

Regression

Images:	Wikipedia

Training	data:	vectors	x
(independent	variable)	and	
y (dependent	variable)

Regression

Images:	Wikipedia

Training	data:	vectors	x
(independent	variable)	and	
y (dependent	variable)

Testing	goal:	given	a	new	x
value,	can	we	predict	y?

x

y

Logistic	regression	for	classification

Images:	Wikipedia

Logistic	regression	for	classification

Images:	Wikipedia

Support	Vector	Machines	(SVM)

Images:	medium.com

Idea:	for	2	(or	more	classes),	
try	to	create	the	“best”	
boundary	between	them

New	examples	can	be	
classified	based	on	which	side	
of	the	hyperplane they	fall	on

hyperplane

Clustering	(unsupervised	learning)

Images:	Polymatheia

Choose	two	
random	data	

points	to	be	the	
first	means

Clustering	(unsupervised	learning)

Images:	Polymatheia

Color	each	point	
based	on	which	
mean	is	closest,	

then	find	means	of	
resulting	clusters

Clustering	(unsupervised	learning)

Images:	Polymatheia

Repeat	the	
process	until	the	
means	are	not	

changing

Clustering	(unsupervised	learning)

Images:	Polymatheia

Repeat	the	
process	until	the	
means	are	not	

changing

Clustering	(unsupervised	learning)

Images:	Polymatheia

Repeat	the	
process	until	the	
means	are	not	

changing

Clustering	(unsupervised	learning)

Images:	Polymatheia

Repeat	the	
process	until	the	
means	are	not	

changing

HMMs	form	a	class	of	machine	learning	
methods	too
• Can	be	supervised (i.e.	we	know	the	hidden	state	
sequence	for	some	examples,	use	that	to	infer	
transition/emission	probabilities)
• Then	estimate	hidden	state	sequence	for	new	
unlabeled	data

• Can	be	unsupervised (i.e.	we	don’t	know	the	hidden	
state	sequence	and	we	want	to	learn/predict	this	
latent	variable)

Images:	Cross	Validated

Recent	trends	in	ML

• Inspired	by	how	neurons	are	
connected	in	our	brains,	“deep	
learning”	has	recently	become	
successful	in	many	fields

Images:	QuantStart

Deep Learning

Deep learning for images

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

?" Y1#

Y2#

Y3#

parameters#

(smiling)#

(glasses)#

(eye.size)#

Sara Mathieson 19

Deep Learning

Classical neural network

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

Y1#

Y2#

Y3#

parameters#hidden.layer#

(smiling)#

(glasses)#

(eye.size)#

Sara Mathieson 19

Deep Learning

Deep network

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

Y1#

Y2#

Y3#

hidden#
layer.2#

parameters#

(smiling)#

(glasses)#

(eye.size)#

hidden#
layer.1#

Sara Mathieson 19

Number	of	articles	about	deep	learning	over	time

2006: Hinton and Salakhutdinov
make a break-through in

initializing deep learning networks

Deep Learning

Break-through: unsupervised learning, autoencoder

X1#

X4#

X2#

X3#

X6#

X5#

h1#

h2#

h4#

h3#

input#

hidden#
layer#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed#
input#

Sara Mathieson 20

Deep Learning

Break-through: unsupervised learning, autoencoder

1. Project data into a lower
dimension:

hj = �
�
W

(1)
j · x

�

�(z) =
1

1 + e

�z

X1#

X4#

X2#

X3#

X6#

X5#

h1#

h2#

h4#

h3#

input#

hidden#
layer#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed#
input#

W(1)#

Sara Mathieson 20

Deep Learning

Break-through: unsupervised learning, autoencoder

1. Project data into a lower
dimension:

hj = �
�
W

(1)
j · x

�

�(z) =
1

1 + e

�z

2. From reduced features,
reconstruct:

x

⇤
i = �

�
W

(2)
i · h

�

X1#

X4#

X2#

X3#

X6#

X5#

h1#

h2#

h4#

h3#

input#

hidden#
layer#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed#
input#

W(1)# W(2)#

Sara Mathieson 20

Deep Learning

Break-through: unsupervised learning, autoencoder

1. Project data into a lower
dimension:

hj = �
�
W

(1)
j · x

�

�(z) =
1

1 + e

�z

2. From reduced features,
reconstruct:

x

⇤
i = �

�
W

(2)
i · h

�

3. Minimize objective
function:

Jx(W) =
1

2

����
x � x

⇤����2

X1#

X4#

X2#

X3#

X6#

X5#

h1#

h2#

h4#

h3#

input#

hidden#
layer#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed#
input#

W(1)# W(2)#

Sara Mathieson 20

Deep Learning

PCA vs. Autoencoder

Original image

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

PCA
reconstruction

Autoencoder
reconstruction

Sara Mathieson 21

Deep Learning

PCA vs. Autoencoder

Original image

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

PCA
reconstruction

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Autoencoder
reconstruction

Sara Mathieson 21

Deep Learning

PCA vs. Autoencoder

Original image

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

PCA
reconstruction

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Autoencoder
reconstruction

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Sara Mathieson 21

Deep Learning

Transform the input data

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

Sara Mathieson 22

Deep Learning

Feature learning for hidden layer 1

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

h1#

h2#

h4#

h3#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed.input#

h5#

hidden#
layer.1#

Sara Mathieson 22

Deep Learning

Feature learning for hidden layer 1

X1#

X4#

X2#

X3#

X6#

X5#

input.data#

X1
*#

X4
*#

X2
*#

X3
*#

X6
*#

X5
*#

reconstructed.input#

h1#

h2#

h4#

h3#

h5#

hidden#
layer.1#

sometimes comical) but nowhere near
as good as a smooth human translation.
“Deep learning will have a chance to do
something much better than the cur-
rent practice here,” says crowd-sourcing
expert Luis von Ahn, whose company
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing
everyone agrees on is that it’s time to try
something different.”

DEEP SCIENCE
In the meantime, deep learning has
been proving useful for a variety of
scientific tasks. “Deep nets are really
good at finding patterns in data sets,”
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to
whoever could beat its best programs
for helping to predict useful drug can-
didates. The task was to trawl through
database entries on more than 30,000
small molecules, each of which had
thousands of numerical chemical-prop-
erty descriptors, and to try to predict
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline
by about 15%,” he says.

Biologists and computational
researchers including Sebastian Seung
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep
learning to help them to analyse three-
dimensional images of brain slices. Such
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines,
but automating the process is the only way to
deal with the billions of connections that are
expected to turn up as such projects continue.
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning
program to map neurons in a large chunk of the
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online
game called EyeWire.

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle,
has used deep learning to teach a program to
look at a string of amino acids and predict the
structure of the resulting protein — whether
various portions will form a helix or a loop, for
example, or how easy it will be for a solvent to
sneak into gaps in the structure. Noble has so
far trained his program on one small data set,
and over the coming months he will move on to
the Protein Data Bank: a global repository that
currently contains nearly 100,000 structures.

For computer scientists, deep learning
could earn big profits: Dahl is thinking about
start-up opportunities, and LeCun was hired

last month to head a new AI department at
Facebook. The technique holds the promise
of practical success for AI. “Deep learning
happens to have the property that if you feed it
more data it gets better and better,” notes Ng.
“Deep-learning algorithms aren’t the only ones
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which
launched last September with the aim of devel-
oping AI, says he will not be using the brain for
inspiration. “It’s like when we invented flight,” he
says; the most successful designs for aeroplanes

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up
eventually to pre-university exams). To
pass the tests, a computer must be able
to read and understand diagrams and
text. How the Allen Institute will make
that happen is undecided as yet — but for
Etzioni, neural networks and deep learn-
ing are not at the top of the list.

One competing idea is to rely on a
computer that can reason on the basis
of inputted facts, rather than trying to
learn its own facts from scratch. So it
might be programmed with assertions
such as ‘all girls are people’. Then, when
it is presented with a text that mentions
a girl, the computer could deduce that
the girl in question is a person. Thou-
sands, if not millions, of such facts are
required to cover even ordinary, com-
mon-sense knowledge about the world.
But it is roughly what went into IBM’s
Watson computer, which famously
won a match of the television game
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson
Solutions has an experimental interest
in deep learning for improving pattern
recognition, says Rob High, chief tech-
nology officer for the company, which
is based in Austin, Texas.

Google, too, is hedging its bets.
Although its latest advances in picture
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December

2012, it hired futurist Ray Kurzweil to pursue
various ways for computers to learn from
experience — using techniques including but
not limited to deep learning. Last May, Google
acquired a quantum computer made by D-Wave
in Burnaby, Canada (see Nature 498, 286–288;
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be
applied to deep learning.

Despite its successes, deep learning is still in
its infancy. “It’s part of the future,” says Dahl.
“In a way it’s amazing we’ve done so much with
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near
Vancouver, Canada.

1. Le, Q. V. et al. Preprint at http://arxiv.org/
abs/1112.6209 (2011).

2. Mohamed, A. et al. 2011 IEEE Int. Conf. Acoustics
Speech Signal Process. http://dx.doi.org/10.1109/
ICASSP.2011.5947494 (2011).

3. Coates, A. et al. J. Machine Learn. Res. Workshop
Conf. Proc. 28, 1337–1345 (2013).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In
Advances in Neural Information Processing
Systems 25; available at go.nature.com/ibace6.

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J.
Preprint at http://arxiv.org/abs/1311.2524 (2013).

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

“DEEP LEARNING HAS THE
PROPERTY THAT IF YOU

FEED IT MORE DATA, IT GETS
BETTER AND BETTER.”

IM
A
G

ES
: A

N
D

R
EW

 N
G

1 4 8 | N A T U R E | V O L 5 0 5 | 9 J A N U A R Y 2 0 1 4

FEATURENEWS

© 2014 Macmillan Publishers Limited. All rights reserved

Sara Mathieson 22

Deep Learning

Low-level features become the new data

h1#

h2#

h4#

h3#

h5#

hidden#
layer01#

sometimes comical) but nowhere near
as good as a smooth human translation.
“Deep learning will have a chance to do
something much better than the cur-
rent practice here,” says crowd-sourcing
expert Luis von Ahn, whose company
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing
everyone agrees on is that it’s time to try
something different.”

DEEP SCIENCE
In the meantime, deep learning has
been proving useful for a variety of
scientific tasks. “Deep nets are really
good at finding patterns in data sets,”
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to
whoever could beat its best programs
for helping to predict useful drug can-
didates. The task was to trawl through
database entries on more than 30,000
small molecules, each of which had
thousands of numerical chemical-prop-
erty descriptors, and to try to predict
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline
by about 15%,” he says.

Biologists and computational
researchers including Sebastian Seung
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep
learning to help them to analyse three-
dimensional images of brain slices. Such
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines,
but automating the process is the only way to
deal with the billions of connections that are
expected to turn up as such projects continue.
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning
program to map neurons in a large chunk of the
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online
game called EyeWire.

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle,
has used deep learning to teach a program to
look at a string of amino acids and predict the
structure of the resulting protein — whether
various portions will form a helix or a loop, for
example, or how easy it will be for a solvent to
sneak into gaps in the structure. Noble has so
far trained his program on one small data set,
and over the coming months he will move on to
the Protein Data Bank: a global repository that
currently contains nearly 100,000 structures.

For computer scientists, deep learning
could earn big profits: Dahl is thinking about
start-up opportunities, and LeCun was hired

last month to head a new AI department at
Facebook. The technique holds the promise
of practical success for AI. “Deep learning
happens to have the property that if you feed it
more data it gets better and better,” notes Ng.
“Deep-learning algorithms aren’t the only ones
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which
launched last September with the aim of devel-
oping AI, says he will not be using the brain for
inspiration. “It’s like when we invented flight,” he
says; the most successful designs for aeroplanes

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up
eventually to pre-university exams). To
pass the tests, a computer must be able
to read and understand diagrams and
text. How the Allen Institute will make
that happen is undecided as yet — but for
Etzioni, neural networks and deep learn-
ing are not at the top of the list.

One competing idea is to rely on a
computer that can reason on the basis
of inputted facts, rather than trying to
learn its own facts from scratch. So it
might be programmed with assertions
such as ‘all girls are people’. Then, when
it is presented with a text that mentions
a girl, the computer could deduce that
the girl in question is a person. Thou-
sands, if not millions, of such facts are
required to cover even ordinary, com-
mon-sense knowledge about the world.
But it is roughly what went into IBM’s
Watson computer, which famously
won a match of the television game
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson
Solutions has an experimental interest
in deep learning for improving pattern
recognition, says Rob High, chief tech-
nology officer for the company, which
is based in Austin, Texas.

Google, too, is hedging its bets.
Although its latest advances in picture
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December

2012, it hired futurist Ray Kurzweil to pursue
various ways for computers to learn from
experience — using techniques including but
not limited to deep learning. Last May, Google
acquired a quantum computer made by D-Wave
in Burnaby, Canada (see Nature 498, 286–288;
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be
applied to deep learning.

Despite its successes, deep learning is still in
its infancy. “It’s part of the future,” says Dahl.
“In a way it’s amazing we’ve done so much with
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near
Vancouver, Canada.

1. Le, Q. V. et al. Preprint at http://arxiv.org/
abs/1112.6209 (2011).

2. Mohamed, A. et al. 2011 IEEE Int. Conf. Acoustics
Speech Signal Process. http://dx.doi.org/10.1109/
ICASSP.2011.5947494 (2011).

3. Coates, A. et al. J. Machine Learn. Res. Workshop
Conf. Proc. 28, 1337–1345 (2013).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In
Advances in Neural Information Processing
Systems 25; available at go.nature.com/ibace6.

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J.
Preprint at http://arxiv.org/abs/1311.2524 (2013).

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

“DEEP LEARNING HAS THE
PROPERTY THAT IF YOU

FEED IT MORE DATA, IT GETS
BETTER AND BETTER.”

IM
A
G

ES
: A

N
D

R
EW

 N
G

1 4 8 | N A T U R E | V O L 5 0 5 | 9 J A N U A R Y 2 0 1 4

FEATURENEWS

© 2014 Macmillan Publishers Limited. All rights reserved

Sara Mathieson 22

Deep Learning

Feature learning for hidden layer 2

g1#

g2#

g4#

g3#

hidden#
layer02#

h1
*
#

h4
*
#

h3
*
#

h2
*
#

h1#

h2#

h4#

h3#

h5# h5
*
#

hidden#
layer01#

sometimes comical) but nowhere near
as good as a smooth human translation.
“Deep learning will have a chance to do
something much better than the cur-
rent practice here,” says crowd-sourcing
expert Luis von Ahn, whose company
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing
everyone agrees on is that it’s time to try
something different.”

DEEP SCIENCE
In the meantime, deep learning has
been proving useful for a variety of
scientific tasks. “Deep nets are really
good at finding patterns in data sets,”
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to
whoever could beat its best programs
for helping to predict useful drug can-
didates. The task was to trawl through
database entries on more than 30,000
small molecules, each of which had
thousands of numerical chemical-prop-
erty descriptors, and to try to predict
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline
by about 15%,” he says.

Biologists and computational
researchers including Sebastian Seung
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep
learning to help them to analyse three-
dimensional images of brain slices. Such
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines,
but automating the process is the only way to
deal with the billions of connections that are
expected to turn up as such projects continue.
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning
program to map neurons in a large chunk of the
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online
game called EyeWire.

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle,
has used deep learning to teach a program to
look at a string of amino acids and predict the
structure of the resulting protein — whether
various portions will form a helix or a loop, for
example, or how easy it will be for a solvent to
sneak into gaps in the structure. Noble has so
far trained his program on one small data set,
and over the coming months he will move on to
the Protein Data Bank: a global repository that
currently contains nearly 100,000 structures.

For computer scientists, deep learning
could earn big profits: Dahl is thinking about
start-up opportunities, and LeCun was hired

last month to head a new AI department at
Facebook. The technique holds the promise
of practical success for AI. “Deep learning
happens to have the property that if you feed it
more data it gets better and better,” notes Ng.
“Deep-learning algorithms aren’t the only ones
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which
launched last September with the aim of devel-
oping AI, says he will not be using the brain for
inspiration. “It’s like when we invented flight,” he
says; the most successful designs for aeroplanes

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up
eventually to pre-university exams). To
pass the tests, a computer must be able
to read and understand diagrams and
text. How the Allen Institute will make
that happen is undecided as yet — but for
Etzioni, neural networks and deep learn-
ing are not at the top of the list.

One competing idea is to rely on a
computer that can reason on the basis
of inputted facts, rather than trying to
learn its own facts from scratch. So it
might be programmed with assertions
such as ‘all girls are people’. Then, when
it is presented with a text that mentions
a girl, the computer could deduce that
the girl in question is a person. Thou-
sands, if not millions, of such facts are
required to cover even ordinary, com-
mon-sense knowledge about the world.
But it is roughly what went into IBM’s
Watson computer, which famously
won a match of the television game
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson
Solutions has an experimental interest
in deep learning for improving pattern
recognition, says Rob High, chief tech-
nology officer for the company, which
is based in Austin, Texas.

Google, too, is hedging its bets.
Although its latest advances in picture
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December

2012, it hired futurist Ray Kurzweil to pursue
various ways for computers to learn from
experience — using techniques including but
not limited to deep learning. Last May, Google
acquired a quantum computer made by D-Wave
in Burnaby, Canada (see Nature 498, 286–288;
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be
applied to deep learning.

Despite its successes, deep learning is still in
its infancy. “It’s part of the future,” says Dahl.
“In a way it’s amazing we’ve done so much with
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near
Vancouver, Canada.

1. Le, Q. V. et al. Preprint at http://arxiv.org/
abs/1112.6209 (2011).

2. Mohamed, A. et al. 2011 IEEE Int. Conf. Acoustics
Speech Signal Process. http://dx.doi.org/10.1109/
ICASSP.2011.5947494 (2011).

3. Coates, A. et al. J. Machine Learn. Res. Workshop
Conf. Proc. 28, 1337–1345 (2013).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In
Advances in Neural Information Processing
Systems 25; available at go.nature.com/ibace6.

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J.
Preprint at http://arxiv.org/abs/1311.2524 (2013).

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

“DEEP LEARNING HAS THE
PROPERTY THAT IF YOU

FEED IT MORE DATA, IT GETS
BETTER AND BETTER.”

IM
A
G

ES
: A

N
D

R
EW

 N
G

1 4 8 | N A T U R E | V O L 5 0 5 | 9 J A N U A R Y 2 0 1 4

FEATURENEWS

© 2014 Macmillan Publishers Limited. All rights reserved

reconstructed#
input#

Sara Mathieson 22

Deep Learning

Feature learning for hidden layer 2

g1#

g2#

g4#

g3#

hidden#
layer02#

h1
*
#

h4
*
#

h3
*
#

h2
*
#

h1#

h2#

h4#

h3#

h5# h5
*
#

hidden#
layer01#

sometimes comical) but nowhere near
as good as a smooth human translation.
“Deep learning will have a chance to do
something much better than the cur-
rent practice here,” says crowd-sourcing
expert Luis von Ahn, whose company
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing
everyone agrees on is that it’s time to try
something different.”

DEEP SCIENCE
In the meantime, deep learning has
been proving useful for a variety of
scientific tasks. “Deep nets are really
good at finding patterns in data sets,”
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to
whoever could beat its best programs
for helping to predict useful drug can-
didates. The task was to trawl through
database entries on more than 30,000
small molecules, each of which had
thousands of numerical chemical-prop-
erty descriptors, and to try to predict
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline
by about 15%,” he says.

Biologists and computational
researchers including Sebastian Seung
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep
learning to help them to analyse three-
dimensional images of brain slices. Such
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines,
but automating the process is the only way to
deal with the billions of connections that are
expected to turn up as such projects continue.
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning
program to map neurons in a large chunk of the
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online
game called EyeWire.

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle,
has used deep learning to teach a program to
look at a string of amino acids and predict the
structure of the resulting protein — whether
various portions will form a helix or a loop, for
example, or how easy it will be for a solvent to
sneak into gaps in the structure. Noble has so
far trained his program on one small data set,
and over the coming months he will move on to
the Protein Data Bank: a global repository that
currently contains nearly 100,000 structures.

For computer scientists, deep learning
could earn big profits: Dahl is thinking about
start-up opportunities, and LeCun was hired

last month to head a new AI department at
Facebook. The technique holds the promise
of practical success for AI. “Deep learning
happens to have the property that if you feed it
more data it gets better and better,” notes Ng.
“Deep-learning algorithms aren’t the only ones
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which
launched last September with the aim of devel-
oping AI, says he will not be using the brain for
inspiration. “It’s like when we invented flight,” he
says; the most successful designs for aeroplanes

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up
eventually to pre-university exams). To
pass the tests, a computer must be able
to read and understand diagrams and
text. How the Allen Institute will make
that happen is undecided as yet — but for
Etzioni, neural networks and deep learn-
ing are not at the top of the list.

One competing idea is to rely on a
computer that can reason on the basis
of inputted facts, rather than trying to
learn its own facts from scratch. So it
might be programmed with assertions
such as ‘all girls are people’. Then, when
it is presented with a text that mentions
a girl, the computer could deduce that
the girl in question is a person. Thou-
sands, if not millions, of such facts are
required to cover even ordinary, com-
mon-sense knowledge about the world.
But it is roughly what went into IBM’s
Watson computer, which famously
won a match of the television game
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson
Solutions has an experimental interest
in deep learning for improving pattern
recognition, says Rob High, chief tech-
nology officer for the company, which
is based in Austin, Texas.

Google, too, is hedging its bets.
Although its latest advances in picture
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December

2012, it hired futurist Ray Kurzweil to pursue
various ways for computers to learn from
experience — using techniques including but
not limited to deep learning. Last May, Google
acquired a quantum computer made by D-Wave
in Burnaby, Canada (see Nature 498, 286–288;
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be
applied to deep learning.

Despite its successes, deep learning is still in
its infancy. “It’s part of the future,” says Dahl.
“In a way it’s amazing we’ve done so much with
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near
Vancouver, Canada.

1. Le, Q. V. et al. Preprint at http://arxiv.org/
abs/1112.6209 (2011).

2. Mohamed, A. et al. 2011 IEEE Int. Conf. Acoustics
Speech Signal Process. http://dx.doi.org/10.1109/
ICASSP.2011.5947494 (2011).

3. Coates, A. et al. J. Machine Learn. Res. Workshop
Conf. Proc. 28, 1337–1345 (2013).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In
Advances in Neural Information Processing
Systems 25; available at go.nature.com/ibace6.

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J.
Preprint at http://arxiv.org/abs/1311.2524 (2013).

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

“DEEP LEARNING HAS THE
PROPERTY THAT IF YOU

FEED IT MORE DATA, IT GETS
BETTER AND BETTER.”

IM
A
G

ES
: A

N
D

R
EW

 N
G

1 4 8 | N A T U R E | V O L 5 0 5 | 9 J A N U A R Y 2 0 1 4

FEATURENEWS

© 2014 Macmillan Publishers Limited. All rights reserved

reconstructed#
input#

Sara Mathieson 22

Deep Learning

High-level features become the new data

g1#

g2#

g4#

g3#

hidden#
layer02#

Sara Mathieson 22

Deep Learning

Last layer: supervised learning

g1#

g2#

g4#

g3#

hidden#
layer02#

Y1#

Y2#

Y3#

parameters#

(smiling)#

(glasses)#

(eye0size)#

Sara Mathieson 22

Deep Learning

Last layer: supervised learning

g1#

g2#

g4#

g3#

hidden#
layer02#

Y1#

Y2#

Y3#

parameters#

(smiling)#

(glasses)#

(eye0size)#

Sara Mathieson 22

Deep Learning

“Fine-tune” the entire deep network

Y1#

Y2#

Y3#

g1#

g2#

g4#

g3#

hidden#
layer12#

parameters#

(smiling)#

(glasses)#

(eye1size)#

X1#

X4#

X2#

X3#

X6#

X5#

h1#

h2#

h4#

h3#

h5#

input1data#
hidden#
layer11#

sometimes comical) but nowhere near
as good as a smooth human translation.
“Deep learning will have a chance to do
something much better than the cur-
rent practice here,” says crowd-sourcing
expert Luis von Ahn, whose company
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing
everyone agrees on is that it’s time to try
something different.”

DEEP SCIENCE
In the meantime, deep learning has
been proving useful for a variety of
scientific tasks. “Deep nets are really
good at finding patterns in data sets,”
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to
whoever could beat its best programs
for helping to predict useful drug can-
didates. The task was to trawl through
database entries on more than 30,000
small molecules, each of which had
thousands of numerical chemical-prop-
erty descriptors, and to try to predict
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline
by about 15%,” he says.

Biologists and computational
researchers including Sebastian Seung
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep
learning to help them to analyse three-
dimensional images of brain slices. Such
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines,
but automating the process is the only way to
deal with the billions of connections that are
expected to turn up as such projects continue.
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning
program to map neurons in a large chunk of the
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online
game called EyeWire.

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle,
has used deep learning to teach a program to
look at a string of amino acids and predict the
structure of the resulting protein — whether
various portions will form a helix or a loop, for
example, or how easy it will be for a solvent to
sneak into gaps in the structure. Noble has so
far trained his program on one small data set,
and over the coming months he will move on to
the Protein Data Bank: a global repository that
currently contains nearly 100,000 structures.

For computer scientists, deep learning
could earn big profits: Dahl is thinking about
start-up opportunities, and LeCun was hired

last month to head a new AI department at
Facebook. The technique holds the promise
of practical success for AI. “Deep learning
happens to have the property that if you feed it
more data it gets better and better,” notes Ng.
“Deep-learning algorithms aren’t the only ones
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which
launched last September with the aim of devel-
oping AI, says he will not be using the brain for
inspiration. “It’s like when we invented flight,” he
says; the most successful designs for aeroplanes

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up
eventually to pre-university exams). To
pass the tests, a computer must be able
to read and understand diagrams and
text. How the Allen Institute will make
that happen is undecided as yet — but for
Etzioni, neural networks and deep learn-
ing are not at the top of the list.

One competing idea is to rely on a
computer that can reason on the basis
of inputted facts, rather than trying to
learn its own facts from scratch. So it
might be programmed with assertions
such as ‘all girls are people’. Then, when
it is presented with a text that mentions
a girl, the computer could deduce that
the girl in question is a person. Thou-
sands, if not millions, of such facts are
required to cover even ordinary, com-
mon-sense knowledge about the world.
But it is roughly what went into IBM’s
Watson computer, which famously
won a match of the television game
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson
Solutions has an experimental interest
in deep learning for improving pattern
recognition, says Rob High, chief tech-
nology officer for the company, which
is based in Austin, Texas.

Google, too, is hedging its bets.
Although its latest advances in picture
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December

2012, it hired futurist Ray Kurzweil to pursue
various ways for computers to learn from
experience — using techniques including but
not limited to deep learning. Last May, Google
acquired a quantum computer made by D-Wave
in Burnaby, Canada (see Nature 498, 286–288;
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be
applied to deep learning.

Despite its successes, deep learning is still in
its infancy. “It’s part of the future,” says Dahl.
“In a way it’s amazing we’ve done so much with
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near
Vancouver, Canada.

1. Le, Q. V. et al. Preprint at http://arxiv.org/
abs/1112.6209 (2011).

2. Mohamed, A. et al. 2011 IEEE Int. Conf. Acoustics
Speech Signal Process. http://dx.doi.org/10.1109/
ICASSP.2011.5947494 (2011).

3. Coates, A. et al. J. Machine Learn. Res. Workshop
Conf. Proc. 28, 1337–1345 (2013).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In
Advances in Neural Information Processing
Systems 25; available at go.nature.com/ibace6.

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J.
Preprint at http://arxiv.org/abs/1311.2524 (2013).

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

“DEEP LEARNING HAS THE
PROPERTY THAT IF YOU

FEED IT MORE DATA, IT GETS
BETTER AND BETTER.”

IM
A
G

ES
: A

N
D

R
EW

 N
G

1 4 8 | N A T U R E | V O L 5 0 5 | 9 J A N U A R Y 2 0 1 4

FEATURENEWS

© 2014 Macmillan Publishers Limited. All rights reserved

Sara Mathieson 22

Application	of	deep	learning	to	
population	genetics

Motivation:	demographic	history	of	Drosophila	

Africa
!

North America
!

Europe
!

pr
es
en
t'

pa
st
'

N3 = 5,224,100

N2 = 620

N1 = 4,975,360

Motivation from Population Genetics

Main goal: population sizes and natural selection

The complete genome sequence of a Neanderthal from the Altai
Mountains, Nature (2013)

University of California Museum of
Paleontology’s “Understanding Evolution”

Sara Mathieson 9

INVITED REVIEW

Joint analysis of demography and selection
in population genetics: where do we stand and
where could we go?

JUNRUI LI , *† HAIPENG LI , * MATTIAS JAKOBSSON,‡ SEN LI ,‡ PER SJÖDIN‡ and
MARTIN LASCOUX*§
*Laboratory of Evolutionary Genomics, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for
Computational Biology, Chinese Academy of Sciences, Shanghai, China, †Graduate School of the Chinese Academy of Sciences,
Beijing 100039, China, ‡Department of Evolutionary Biology, Evolutionary Biology Centre, and Science for Life Laboratory,
Uppsala University, 752 36 Uppsala, Sweden, §Program in Plant Ecology and Evolution, Department of Ecology and Genetics,
Uppsala University, 752 36 Uppsala, Sweden

Abstract

Teasing apart the effects of selection and demography on genetic polymorphism remains
one of the major challenges in the analysis of population genomic data. The traditional
approach has been to assume that demography would leave a genome-wide signature,
whereas the effect of selection would be local. In the light of recent genomic surveys of
sequence polymorphism, several authors have argued that this approach is questionable
based on the evidence of the pervasive role of positive selection and that new approaches
are needed. In the first part of this review, we give a few empirical and theoretical
examples illustrating the difficulty in teasing apart the effects of selection and
demography on genomic polymorphism patterns. In the second part, we review recent
efforts to detect recent positive selection. Most available methods still rely on an a priori
classification of sites in the genome but there are many promising new approaches.
These new methods make use of the latest developments in statistics, explore aspects of
the data that had been neglected hitherto or take advantage of the emerging population
genomic data. A current and promising approach is based on first estimating
demographic and genetic parameters, using, e.g., a likelihood or approximate Bayesian
computation framework, focusing on extreme outlier regions, and then using an
independent method to confirm these. Finally, especially for species where evidence of
natural selection has been limited, more experimental and versatile approaches that
contrast populations under varied environmental constraints might be more successful
compared with species-wide genome scans in search of specific signatures.

Keywords: contemporary evolution, ecological genetics, population genetics—theoretical, popu-
lation genetics—empirical

Received 14 June 2011; revision received 30 August 2011; accepted 7 September 2011

Introduction

Two major goals of population genetics are to
reconstruct the demographic history of populations and
species and to identify the parts of the genome that are,
or have been, under natural selection. Unfortunately,
selection and demographic events can leave very

similar signatures in the genome, and one of the
remaining challenges of population genetics is develop-
ing approaches to disentangle selection from demogra-
phy. As we shall argue below, this problem is
compounded by the fact that selection events are often
associated with demographic changes. In this review,
we will focus on positive selection and, in most cases,
on recent selection (say, <0.1 Ne generations ago where
Ne is the effective population size).

Correspondence: Martin Lascoux, Fax: +46 (18) 4716457;
E-mail: martin.lascoux@ebc.uu.se

! 2011 Blackwell Publishing Ltd

Molecular Ecology (2012) 21, 28–44 doi: 10.1111/j.1365-294X.2011.05308.x

Selective	sweeps	can	cause	a	loss	
of	diversity	

A Deep Learning Method for Population Genetics

Training data: simulated datasets

N1

time

p
op

u
la

ti
on

 s
iz

e

N2

N3
400,000 datasets:

I 2,500 bottlenecks

I 160 regions/genome

1. baseline e↵ective population size: Ne = 100, 000

2. n = 100 individuals

3. L = 100, 000 bases per region

4. 75% of data for training and 25% for testing

Sara Mathieson 24

A Deep Learning Method for Population Genetics

Training data: simulated datasets

N1

time

p
op

u
la

ti
on

 s
iz

e

N2

N3
400,000 datasets:

I 2,500 bottlenecks

I 160 regions/genome

1. baseline e↵ective population size: Ne = 100, 000

2. n = 100 individuals

3. L = 100, 000 bases per region

4. 75% of data for training and 25% for testing

Sara Mathieson 24

A Deep Learning Method for Population Genetics

Selection: four di↵erent classes

Population*Sizes*10

Population*Sizes*20

Population*Sizes*30

balancing*selection0 standing*variation*(soft*sweep)0de#novo#mutation*(hard*sweep)0

) 4 selection classes

Sara Mathieson 25

Compute	statistics	around	selected	site

selected site

region 1: within 10kb

region 3: 30-50kb

region 2: 10-30kb

A Deep Learning Method for Population Genetics

Summary statistics as features

I Number of segregating sites 3 stats

I Tajima’s D 3 stats

I Folded site frequency spectrum (SFS) 150 stats

I Length distribution between segregating sites 48 stats

I Identity-by-state (IBS) tract length distribution 90 stats

I Linkage disequilibrium (LD) distributions 48 stats

I Haplotype frequency statistics 3 stats

= 345 features total

Sara Mathieson 26

A Deep Learning Method for Population Genetics

A deep learning method for population genetics

X1#

X4#

X2#

X3#

X345#

…
#

statistics#

N2#

N3#

g1#

g2#

g25#

hidden#
layer72#

population#
sizes#

selection#

N1#

S#

GACTGGCTA
AGCTAGCTT
TAATCCGCA

h1#

h2#

h3#

h50#

hidden#
layer71#

…
#

…
#

Sara Mathieson 27

