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Outline: Apr 4

m Lab 5 Examples

m HMM example in population genetics
m Recap Viterbi Algorithm

m Forward-Backward Algorithm

m Posterior Decoding

m In lab tomorrow: working in log-space

Notes:

e Office hours TODAY 1-3pm

* Lab 7 due tonight

 Lab 8: 1.5 week lab (last graded lab)




Lab 5 Examples




Lab 5: UPGMA visualizations
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Lab 5: UPGMA visualizations
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Lab 5: UPGMA visualizations Quinn & Kelly
(including branch lengths)

Genji & Eugene

.36875000000000036

3.16875

Sarah & Tommy b8 0.26249999999999996

1.6724999999999999

12.000 13.000 13.000

12.000




Lab 5: dissimilarity map comparisons

SSE for UPGMA and Neighbor Joining on the Inclass and
Primate Datasets
4 3.666666 B UPGMA
B Neighbor Joining
S
5
g,
s C
e William
7
0.28425 .
0 .052 . ..
; [ SSE for UPGMA and Neighbor Joining on the Mammals
Inclass Primate Dataset
Dataset 2000 B Mammal
1500 1587.214508
g
5
o
S 1000
-
A
£
@ 500
203.8780208
0
UPGMA Neighbor Joining
Clustering Method




HMM example from population genetics

Back to recombination....




Recombination over time
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Recombination over time
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Recombination over time
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Recombination over time
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How could we encode this as an HMM?

m T[ake-home message: the tree changes across the genome! Both topology (for n > 2)
and branch lengths




Sequence data at many sites
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HMM observations: sequence data




HMM hidden states: the tree




Number of possible trees grows exponentially... just look at n=2

One person, two
chromosomes!

Now the hidden state becomes
the *time* of coalescence




PSMC: pairwise sequentially Markovian coalescent

m The distribution of pairwise coalescence times should be exponential with

parameter 1

m If this differs from the exponential distribution, there were probably
population size changes

m If all coalescence times are very recent, small population size

m If all coalescence times are very ancient, large population size
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m We can use this to reconstruct the population size change history over time!

Letter

Inference of human population history
from individual whole-genome sequences

Heng Li B & Richard Durbin

Nature 475, 493-496 (28 July 2011) Received: 01 April 2009

doi:10.1038/nature10231 Accepted: 20 May 2011

Image: wikipedia
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“The complete genome sequence of a Neanderthal from the Altai Mountains”, Prufer et al (2014)




Recap Viterbi Algorithm




K = num hidden states, B = num emitted states

HMM definition

Ziq Z;

m Transition probabilities: Akl = P(zz' — l|Zz'—1 = k) ( : ) @

(K x K matrix)




K = num hidden states, B = num emitted states

HMM definition

m Transition probabilities: Akl = P(zz' — l|Zz'—1 = k) ( : ) @

(K x K matrix)
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K = num hidden states, B = num emitted states

HMM definition

m Transition probabilities: Akl = P(zz' — l|Zz'—1 = k) ( : ) @

(K x K matrix)

Zj

m Emission probabilities: €k(b) = P(ZUz' — b‘zi — k)
(K x B matrix) b
ZO Zl X

m Away to deal with the initial state @

1) Special start state with no emission



K = num hidden states, B = num emitted states

HMM definition

m Transition probabilities: Akl = P(zi — l|Zz'—1 = k) ( : ) @

(K x K matrix)

Zj
m Emission probabilities: €k(b) — P(ZUz' — b‘Zz' — k)
(K x B matrix) b
Z Z; Z; X;
m Away to deal with the initial state @
1) Special start state with no emission Ty — p(Z]: k)
2) Probability distribution over initial states
7, = probability of starting in state & 1) X1 2) X1




Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*
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m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*

m Initialization: create a K x L matrix, this will be our dynamic programming (DP) table




Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)
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Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*

m Initialization: create a K x L matrix, this will be our dynamic programming (DP) table
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Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*
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Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*

m Initialization: create a K x L matrix, this will be our dynamic programming (DP) table

(Note: there are lots of ways

Vk (].) = Tk * €k (xl) to initialize, this avoids a

special start state.)

m Recursion:

m Termination and traceback: | P(&,Z") = max {Vk(L)}




Viterbi Algorithm

m Input: observed sequence (x4,X,,...,X;) and transition/emission probabilities (a and e matrices)

m Output: most probable (i.e. most likely) hidden state sequence z*

m Initialization: create a K x L matrix, this will be our dynamic programming (DP) table

(Note: there are lots of ways

Vk (].) = Tk * €k (xl) to initialize, this avoids a

special start state.)

m Recursion:

m Termination and traceback: P(Z,7") = max {Vk(L)} 1220321120
Z*=( ’ ’ ’ ’ ’ ’ ’ ’ ’ )




What is wrong with Viterbi?




What is wrong with Viterbi?

m Only one path! We can’t compute the probability of being in state k at step i




What is wrong with Viterbi?

m Only one path! We can’t compute the probability of being in state k at step i

m We don’t know if there are many possible paths, all with very similar
probabilities




What is wrong with Viterbi?

m Only one path! We can’t compute the probability of being in state k at step i

m We don’t know if there are many possible paths, all with very similar
probabilities

m And a note for later: we may not know the transition and emission
probabilities




Forward-Backward algorithm
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