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Outline: Apr 4
■ Lab 5 Examples
■ HMM example in population genetics
■ Recap Viterbi Algorithm
■ Forward-Backward Algorithm
■ Posterior Decoding
■ In lab tomorrow: working in log-space

Notes:
• Office hours TODAY 1-3pm
• Lab 7 due tonight
• Lab 8: 1.5 week lab (last graded lab)



Lab 5 Examples



Lab 5: UPGMA visualizations
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Lab 5: UPGMA visualizations
(including branch lengths)

Sarah & Tommy
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Lab 5: dissimilarity map comparisons 

William



HMM example from population genetics
Back to recombination….
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Recombination over time

Now zoom in on *this* portion of the genome

Coalesce after *3* 
generations



How could we encode this as an HMM?

■ Take-home message: the tree changes across the genome!  Both topology (for n > 2) 
and branch lengths
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Sequence data at many sites
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Tree changes along the genome!
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HMM observations: sequence data
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HMM hidden states: the tree
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Number of possible trees grows exponentially… just look at n=2

One person, two 
chromosomes!

Now the hidden state becomes 
the *time* of coalescence



PSMC: pairwise sequentially Markovian coalescent
■ The distribution of pairwise coalescence times should be exponential with 

parameter 1

■ If this differs from the exponential distribution, there were probably 
population size changes

■ If all coalescence times are very recent, small population size

■ If all coalescence times are very ancient, large population size 

■ We can use this to reconstruct the population size change history over time!

Image: wikipedia



PSMC: an HMM for two sequences

“The complete genome sequence of a Neanderthal from the Altai Mountains”, Prufer et al (2014) 



Recap Viterbi Algorithm



HMM definition

■ Transition probabilities:
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HMM definition
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HMM definition

■ Transition probabilities:

■ Emission probabilities:

■ A way to deal with the initial state

(K x K matrix)

K = num hidden states, B = num emitted states

k l

zi-1 zi
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(K x B matrix)

1) Special start state with no emission
2) Probability distribution over initial states

z1

x1
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1) 2)

πk = p(z1= k)
k



Viterbi Algorithm
■ Input: observed sequence (x1,x2,…,xL) and transition/emission probabilities (a and e matrices)

■ Output: most probable (i.e. most likely) hidden state sequence z*
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■ Input: observed sequence (x1,x2,…,xL) and transition/emission probabilities (a and e matrices)

■ Output: most probable (i.e. most likely) hidden state sequence z*

■ Initialization: create a K x L matrix, this will be our dynamic programming (DP) table

■ Recursion: K
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(Note: there are lots of ways 
to initialize, this avoids a 

special start state.)
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Viterbi Algorithm
■ Input: observed sequence (x1,x2,…,xL) and transition/emission probabilities (a and e matrices)

■ Output: most probable (i.e. most likely) hidden state sequence z*

■ Initialization: create a K x L matrix, this will be our dynamic programming (DP) table

■ Recursion:

■ Termination and traceback:

K

L

z* = (1,2,2,0,3,2,1,1,2,0)

0

1

2

3

(Note: there are lots of ways 
to initialize, this avoids a 

special start state.)



What is wrong with Viterbi?
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What is wrong with Viterbi?

■ Only one path!  We can’t compute the probability of being in state k at step i

■ We don’t know if there are many possible paths, all with very similar 
probabilities

■ And a note for later: we may not know the transition and emission 
probabilities



Forward-Backward algorithm










