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Outline: Mar 26

■ Recap the Coalescent
■ Using the coalescent to detect deviations from 

neutrality
■ Tajima’s D test statistic

Notes:
• Office hours TODAY 3-5pm
• Handout 20, 1(a) error: y cannot be 0



Logistic Notes

■ cc your partner when communicating with me about the lab

■ I have been getting a lot of great & duplicate questions over email – unless your 
question applies only to a specific issue with your code, use Piazza!

■ Please be on time to class and lab, not only affects you but your partner as well

■ Let me know if you have any partner issues



Finish Handout 19



Handout 19







Recap the Coalescent
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Coalescent Theory

■ The Coalescent (usually attributed to Kingman, 1982) is a mathematical model for the evolution 
and genealogical history of a population

■ The Coalescent can be derived from the Wright-Fisher model, but also several other discrete-time 
models (i.e. the Moran model)

■ We assume the population size N is large

■ We rescale time where 1 unit in coalescent time = 2N generations

■ Rescaling time allows us to work with numbers that are on order 1 (avoiding numerical issues 
that arise with very small numbers) and we also avoid a factor of 2N in every formula



Population size 2N=6, sample size n = 2
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Don’t choose the same 
parent for g-1 generations

Choose same parent 
in the gth generation 

Population size 2N=6, sample size n = 2

Coalescent derivation from 
the Wright-Fisher model

Probability two samples coalesce
after g generations:

C = 4

[Geometric distribution]
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■ We will make use of the Taylor series for 
e-x around x = 0:

■ We will only use the first 2 terms:

Created using WolframAlpha



■ This allows us to rewrite our geometric 
coalescent probability

■ as (drop the -1 since g is large):

Coalescent derivation from the Wright-Fisher model

■ We will make use of the Taylor series for 
e-x around x = 0:

■ We will only use the first 2 terms:

Created using WolframAlpha

Correction!



Coalescent for n = 2
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Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages

■ For n=2, this gives us an exponential 
distribution with parameter 1

■ The expected time for 2 lineages to coalesce 
is 1 coalescent unit of time => 2N generations

A B

T2
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The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)
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The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)

■ Expected value (think: weighted average, 
mean)





Deviations from neutrality:
Tajima’s D



Tajima’s D
■ We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

■ More generally, “neutral” means agreeing with our Wright-Fisher model assumptions 
(constant population size, mutations have no consequences, random mating, etc)



Tajima’s D
■ We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

■ More generally, “neutral” means agreeing with our Wright-Fisher model assumptions 
(constant population size, mutations have no consequences, random mating, etc)

■ Deviations from neutrality could mean that any of these assumptions are wrong

■ We will focus on two of them: allowing variable population size and allowing mutations 
with different selective advantages/disadvantages



Tajima’s D
■ We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

■ More generally, “neutral” means agreeing with our Wright-Fisher model assumptions 
(constant population size, mutations have no consequences, random mating, etc)

■ Deviations from neutrality could mean that any of these assumptions are wrong

■ We will focus on two of them: allowing variable population size and allowing mutations 
with different selective advantages/disadvantages

■ Tajima’s D (1989) is a test statistic that compares different measures of sequence 
diversity that should be the same under neutrality

■ If they are not the same, we can further investigate the causes



4

This should be a 
4, not a 2!




