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Outline: Mar 26

m Recap the Coalescent

m Using the coalescent to detect deviations from
neutrality

m [ajima’s D test statistic

Notes:
e Office hours TODAY 3-bpm
 Handout 20, 1(a) error: y cannot be O




Logistic Notes

m cc your partner when communicating with me about the lab

m | have been getting a lot of great & duplicate questions over email - unless your
qguestion applies only to a specific issue with your code, use Piazza!

m Please be on time to class and lab, not only affects you but your partner as well

m Let me know if you have any partner issues




Finish Handout 19
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Recap the Coalescent




Coalescent Theory

m The Coalescent (usually attributed to Kingman, 1982) is a mathematical model for the evolution
and genealogical history of a population
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Coalescent Theory

The Coalescent (usually attributed to Kingman, 1982) is a mathematical model for the evolution
and genealogical history of a population

The Coalescent can be derived from the Wright-Fisher model, but also several other discrete-time
models (i.e. the Moran model)

We assume the population size N is large

We rescale time where 1 unit in coalescent time = 2N generations

Rescaling time allows us to work with numbers that are on order 1 (avoiding numerical issues
that arise with very small numbers) and we also avoid a factor of 2N in every formula



Coalescent derivation from
the Wright-Fisher model

Probability two samples coalesce
after g generations:

Population size 2N=6, sample size n = 2
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Coalescent derivation from
the Wright-Fisher model

Probability two samples coalesce
after g generations:

1\t 1
Pe(g) = (1 2N> N
-

Don’t choose the same
parent for g-1 generations

Choose same parent
in the gt" generation

[Geometric distribution]

Population size 2N=6, sample size n = 2

>~ C

/

4



Coalescent derivation from the Wright-Fisher model

m We will make use of the Taylor series for
e* around x = O:

A

_CU_ —_— — —— — — e o o
e =1 CE—I—Q! 3!+4!+

m We will only use the first 2 terms:

e ' ~1—r
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m We will make use of the Taylor series for
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m We will only use the first 2 terms:
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Created using WolframAlpha




Coalescent derivation from the Wright-Fisher model

m We will make use of the Taylor series for

e*X around x = O:

332

2!

3zt

e—wzl_x_l_____i___l_

3! 4!

m We will only use the first 2 terms:

e ' ~1—r

Created using WolframAlpha

m This allows us to rewrite our geometric

coalescent probability

Po(g) = (1 — %

g—1 1
2N

m as (drop the -1 since g is large):

Correction!



Coalescent for n = 2
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Coalescent for n = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T, be a random variable representing
the time when there are i lineages

m For n=2, this gives us an exponential
distribution with parameter 1

m The expected time for 2 lineages to coalesce
is 1 coalescent unit of time => 2N generations




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m |n general, the time when there are i
lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m |n general, the time when there are i
lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)

m Expected value (think: weighted average,
mean)

[T = /O Oote)e(;)tdt _ é







Deviations from neutrality:
Tajima’s D
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(constant population size, mutations have no consequences, random mating, etc)




Tajima’s D

m We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

m More generally, “neutral” means agreeing with our Wright-Fisher model assumptions
(constant population size, mutations have no consequences, random mating, etc)

m Deviations from neutrality could mean that any of these assumptions are wrong

m We will focus on two of them: allowing variable population size and allowing mutations
with different selective advantages/disadvantages



Tajima’s D

m We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

m More generally, “neutral” means agreeing with our Wright-Fisher model assumptions
(constant population size, mutations have no consequences, random mating, etc)

m Deviations from neutrality could mean that any of these assumptions are wrong

m We will focus on two of them: allowing variable population size and allowing mutations
with different selective advantages/disadvantages

m T[ajima’s D (1989) is a test statistic that compares different measures of sequence
diversity that should be the same under neutrality

m If they are not the same, we can further investigate the causes
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