## CS 68: BIOINFORMATICS

Prof. Sara Mathieson Swarthmore College Spring 2018

#### Outline: Feb 28

Continue Neighbor-Joining (NJ)
Theory of the Q-criteria
Consistency of NJ

#### Notes:

- Office hours TODAY 1-3pm
- Create "cheat-sheet" for midterm
- Choose partners for Lab 5

#### Lab 4 Runtime plot examples

## Hannah and Melissa



#### Angelina and Rye



#### Charlotte and Emily



## Kelly and Quinn



#### Lesia and Linda



#### Continue Neighbor-Joining (NJ)

## NJ initialization

Input

We are given a set of samples  $\mathcal{X}$  and a dissimilarity map  $\delta$  on  $\mathcal{X}$ .

#### **Initialization**

- Create a star tree with center vertex c and an edge (c, u) between c and all samples  $u \in \mathcal{X}$ .
- Let  $N_c$  be the set of neighbors of c and  $n = |N_c|$  (cardinality of  $N_c$ ). Set d equal to  $\delta$ .



$$N_c = \{b, e, f, g, h\}, |N_c| = 5$$

(a) Find vertices f, g that minimize the Q-criteria. Note that UPGMA would only use the first term in this formula, d(i, j). The remaining terms represent how far i and j are from the other vertices.

$$Q(i,j) = (n-2) \cdot d(i,j) - S_i - S_j, \text{ where }$$

$$S_i = \sum_{k \in N_c} d(i, k)$$

(a) Find vertices f, g that minimize the Q-criteria. Note that UPGMA would only use the first term in this formula, d(i, j). The remaining terms represent how far i and j are from the other vertices.

$$Q(i,j) = (n-2) d(i,j) - S_i - S_j, \text{ where}$$
$$S_i = \sum_{k \in N_c} d(i,k)$$
UPGMA

(a) Find vertices f, g that minimize the Q-criteria. Note that UPGMA would only use the first term in this formula, d(i, j). The remaining terms represent how far i and j are from the other vertices.



(b) Join f and g at internal vertex v. Now  $N_c$  contains v but not f and g. Compute the new edges weights:

$$d(f,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_f - S_g]$$
$$d(g,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_g - S_f]$$



(b) Join f and g at internal vertex v. Now  $N_c$  contains v but not f and g. Compute the new edges weights:

$$d(f,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_f - S_g]$$
$$d(g,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_g - S_f]$$



(b) Join f and g at internal vertex v. Now  $N_c$  contains v but not f and g. Compute the new edges weights:

$$d(f,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_f - S_g]$$
$$d(g,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_g - S_f]$$



# (b) Join f and g at internal vertex v. Now $N_c$ contains v but not f and g. Compute the new edges weights: $d(f, v) = \frac{1}{2}d(f, g) + \frac{1}{2(n-2)}[S_f - S_g]$ $d(g, v) = \frac{1}{2}d(f, g) + \frac{1}{2(n-2)}[S_g - S_f]$



/ UPGMA

(b) Join f and g at internal vertex v. Now  $N_c$  contains v but not f and g. Compute the new edges weights:

$$d(f,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_f - S_g]$$
$$d(g,v) = \frac{1}{2}d(f,g) + \frac{1}{2(n-2)}[S_g - S_f]$$



The *difference* between how far fand g are from other vertices. In this example g is on average further from other vertices, so d(g,v) > d(f,v)



(c) Compute the distances from v to all remaining vertices  $i \in N_c$ :

$$d(i,v) = \frac{1}{2}[d(f,i) - d(f,v)] + \frac{1}{2}[d(g,i) - d(g,v)]$$



(c) Compute the distances from v to all remaining vertices  $i \in N_c$ :

$$d(i,v) = \frac{1}{2}[d(f,i) - d(f,v)] + \frac{1}{2}[d(g,i) - d(g,v)]$$

Another way to write this:

$$d(i,v) = \frac{1}{2}[d(f,i) + d(g,i) - d(f,g)]$$



#### **NJ** Termination

#### <u>Termination</u>

When n = 3, the tree topology does not change since we have obtained a binary tree. We still need to run the last iteration though to determine the 3 remaining edge weights. The output is then the tree topology and all edge weights.



#### NJ Termination

#### <u>Termination</u>

When n = 3, the tree topology does not change since we have obtained a binary tree. We still need to run the last iteration though to determine the 3 remaining edge weights. The output is then the tree topology and all edge weights.



We could "merge" e and w at c, then we would find d(e,c) and d(w,c) in step (b) and find d(v,c) in step (c)

$$N_c = \{e, v, w\}, |N_c| = 3$$

#### Handout 13 Solution

(1)(a) N=5 01366 The state 100 CC

А d(A, w) = 1d(B, w) = 0v O C 4 CV Tree C---, wo B A -14 - - -12 . .



#### Q-criteria theory and consistency

3 if S is a tree metric, metric from NJ) is 0 equal to 8 3 



Q-Criteria Finding fig that Minimite the average total tree length > want the tree that minimites the total amount of evolution"