
CS21: INTRODUCTION TO
COMPUTER SCIENCE
Prof. Mathieson
Fall 2018
Swarthmore College

Outline Oct 24:

• Recap reading files
• String and List methods
• TDD: Top Down Design

• word_guesser.py

Notes

•Lab 6 due Saturday night
•Hand back stack diagram worksheet today
•Ninja session tonight! 7-10pm
•Office Hours Friday 3-5pm

Sit somewhere new!

CS after CS21

• Come talk to me if you’re interested in pursuing CS and
have questions (31 vs. 35, etc)

• Even if you never take anything beyond CS21, takeaway:
creativity under constraint

Screenshots and Videos: please email!
• Windows Videos: https://www.hongkiat.com/blog/win-

screen-recording-softwares/

• Mac Videos: Quicktime

• Linux screenshot (camera icon on the bottom of screen)

Graphics on your own machine!
https://www.cs.swarthmore.edu/help/access.html
(need Xquartz (Mac) or Xming (Windows)

Recap reading files & Handout 4

Built-in vs. User-defined functions
• Both are functions!

• User-defined example:

• Built-in examples:
• int(..)
• print(..)
• input(..)
• random.choice(..)
• random.randrange(..)
• math.sqrt(..)

Built-in vs. User-defined functions
• Both are functions!

• User-defined example:

• Built-in examples:
• int(..)
• print(..)
• input(..)
• random.choice(..)
• random.randrange(..)
• math.sqrt(..)

Why are random.choice(..)
and random.randrange(..)
functions and not methods?

Built-in vs. User-defined functions
• Both are functions!

• User-defined example:

• Built-in examples:
• int(..)
• print(..)
• input(..)
• random.choice(..)
• random.randrange(..)
• math.sqrt(..)

Why are random.choice(..)
and random.randrange(..)
functions and not methods?

Answer: random is a library/module,
not a specific instance of a class.

Mini-quiz, discuss with a partner

1) What is the type of c_file? (conceptually)

2) What is the type of line?

3) What does split do?

4) What is the type of tokens?

Mini-quiz, discuss with a partner

1) What is the type of c_file? (conceptually)

2) What is the type of line?

3) What does split do?

4) What is the type of tokens?

file (technically TextIOWrapper)

Mini-quiz, discuss with a partner

1) What is the type of c_file? (conceptually)

2) What is the type of line?

3) What does split do?

4) What is the type of tokens?

file (technically TextIOWrapper)

string

Mini-quiz, discuss with a partner

1) What is the type of c_file? (conceptually)

2) What is the type of line?

3) What does split do?

4) What is the type of tokens?

file (technically TextIOWrapper)

string

Breaks up a string based on spaces.

Mini-quiz, discuss with a partner

1) What is the type of c_file? (conceptually)

2) What is the type of line?

3) What does split do?

4) What is the type of tokens?

file (technically TextIOWrapper)

string

Breaks up a string based on spaces.

list

Template for reading a file
1) Use a for loop to read the sequence of lines (recommended)

Template for reading a file
1) Use a for loop to read the sequence of lines (recommended)

2) Loop over the line indices (using readline() to get the next line)

st
ud

en
ts

_f
ile

.p
y

students_file.py

Non-printing (“whitespace”) characters

• \n newline (appears at the end of each line in a file)

• \t tab

• \s or “ ” space

• Note: <str>.strip() removes leading and trailing whitespace

List and String Methods

Common List methods

Common List methods
• Add a single element to a list: lst.append(item)

Common List methods
• Add a single element to a list: lst.append(item)

• Add a list to the end of a list: lst.extend(another_lst)

Common List methods
• Add a single element to a list: lst.append(item)

• Add a list to the end of a list: lst.extend(another_lst)

• Return the index of an element: idx = lst.index(item)

Common List methods
• Add a single element to a list: lst.append(item)

• Add a list to the end of a list: lst.extend(another_lst)

• Return the index of an element: idx = lst.index(item)

• Return the count of an element: c = lst.count(item)

Common List methods
• Add a single element to a list: lst.append(item)

• Add a list to the end of a list: lst.extend(another_lst)

• Return the index of an element: idx = lst.index(item)

• Return the count of an element: c = lst.count(item)

• List concatenation (not a method): lst + another_lst

Common String Methods:
they all return something!

• string.index(smaller_string)
• string.count(smaller_string)
• string.isalpha()
• string.lower()
• string.upper()
• string.split(smaller_string)
• string.strip()

Common String Methods:
they all return something!

• string.index(smaller_string) int
• string.count(smaller_string) int
• string.isalpha() bool
• string.lower() string
• string.upper() string
• string.split(smaller_string) list
• string.strip() string

TDD
Top Down Design

Structure of main and “helper” functions

Main (driver)

Structure of main and “helper” functions

Main (driver)

Helper
Function

1 Helper
Function

2

Helper
Function

3

Structure of main and “helper” functions

Main (driver)

Helper
Function

1 Helper
Function

2

Helper
Function

3

Sub-
helper

A

Sub-
helper

B

Sub-
helper

C

Structure of main and “helper” functions

Structure of main and “helper” functions

Structure of main and “helper” functions

Steps of TDD

Steps of TDD
1) Design a high-level main function that captures the

basic idea of the program. Often this involves some initial
variables, an outer loop, and some ending/output.

Steps of TDD
1) Design a high-level main function that captures the

basic idea of the program. Often this involves some initial
variables, an outer loop, and some ending/output.

2) As you're writing/designing main, think about which details
can be abstracted into small tasks. Make names for
these functions and write their signatures below main.

Steps of TDD
1) Design a high-level main function that captures the

basic idea of the program. Often this involves some initial
variables, an outer loop, and some ending/output.

2) As you're writing/designing main, think about which details
can be abstracted into small tasks. Make names for
these functions and write their signatures below main.

3) "Stub" out the functions. This means that they should
work and return the correct type so that your code runs,
but they don’t do the correct task yet. For example, if a
function should return a list, you can return []. Or if it
returns a boolean, you can return False.

Steps of TDD
1) Design a high-level main function that captures the

basic idea of the program. Often this involves some initial
variables, an outer loop, and some ending/output.

2) As you're writing/designing main, think about which details
can be abstracted into small tasks. Make names for
these functions and write their signatures below main.

3) "Stub" out the functions. This means that they should
work and return the correct type so that your code runs,
but they don’t do the correct task yet. For example, if a
function should return a list, you can return []. Or if it
returns a boolean, you can return False.

4) Iterate on your design until you have a working main and
stubbed out functions. Then start implementing the
functions, starting from the “bottom up”.

Reasons to use TDD

• Creates code that is easier to implement, debug, modify,
and extend

• Avoids going off in the wrong direction (i.e. implementing
functions that are not useful or don’t serve the program)

• Creates code that is easier for you or someone else to
read and understand later on

