CS21: Intro to Computer Science Handout 1: Sept 4, 2017

Algorithms and Computer Science: Nonograms Modified from notes by Jeff Knerr

0. Partner’s Info (name, year, etc):
(remember this for Wednesday!)

1. Try to start solving the nonogram (from www.nonograms.org) below using the following rules:

e The numbers beside each row and column specify how many sets of “filled-in” squares need
to be in each row. For example, if the row numbers are “2 3”7, then there needs to be a set
of 2 consecutive filled-in squares, followed by a set of 3 consecutive filled-in squares.

e Bach filled-in set of squares must be separated from other filled-in sets by at least one non-
filled-in square.

e Once you know a square cannot be filled in, you can mark it with an x.

ha
(AL C T o I o I o T T

Hint: start with the largest numbers. What constraints to they put on the filled-in squares?

2. Before thinking about an algorithm for solving an entire nonogram, what about an algorithm for
checking or wverifying a given candidate solution? For example, just considering this one row by
itself, is it an example of a correct solution?

-
]
3. What about this solution? Is it correct?

31T OO <

Page 1 of 2



(CS21: Intro to Computer Science Handout 1: Sept 4, 2017

4. We can more or less eyeball the difference between the two solutions above, but what about a
computer? Say instead of an image the computer had a series of characters representing each row,
with F for the filled-in squares and E for the empty squares. The examples above would be:

EEFEEFFFEEEFFEEFE
EEFEEFEFEFEFFEETFE

Now it is more difficult to see if the solutions are correct or not. Define an series of steps that
a computer could follow for determining whether or not this row is correct, given a target list of
numbers (“1 3 2 1”7 in this case). Try to be as specific as possible about each step.

5. (Optional) Define an algorithm for solving nonograms (assuming a unique solution exists).

Page 2 of 2



