CSC 111: @
Intro to Computer Science

through Programming

Spring 2017
Prof. Sara Mathieson

i wBNAET T

-

+ Encouraged: TA hours, office hours, Piazza for final review

+ Final project is due May 3 (Wednesday)

+ TA review session: May 3 (Wednesday), 7:30-9:30pm

+ Practice midterm during lab this week

+ Self-scheduled final exam (similar style to the midterm)

+ Last office hours: Monday 3-5pm (final prep only)

Outline: 5/a1

+While loops
+Files

+Dictionaries

+Activity that combines while loops, files,
and dictionaries

+Wed: recursion and classes

Preparing for the Final

Study Strategies

Use the development of your cheat sheet as a way to
structure reviewing the material

Go over lectures notes/code, homeworks, labs (your code and
the solutions)

Use the shell to test out things as much as possible

Redo parts of in-class code or assignments on paper without
looking at the solutions

Take the practice midterm and review the feedback

Do the practice problems in the book

Practice Midterm

+ During each lab section (you don’t have to go to your assigned
section)

+ TAs will provide feedback

+ | will add 3 points to your final exam score if you take the practice
midterm during lab, give an honest effort, put your name on it,
turnitin, and PICK IT UP after feedback has been given

While loops

ldea of while loops

while <condition>:
<code>

while <condition>:

ldea of while loops <code>

1) Evaluate <condition> -> True

while <condition>:

ldea of while loops <code>

1) Evaluate <condition> -> True

2) Enter while loop and execute <code>

while <condition>:

ldea of while loops <code>

1) Evaluate <condition> -> True
2) Enter while loop and execute <code>

3) Go back and evaluate <condition> -> True

while <condition>:

ldea of while loops <code>

Evaluate <condition> -> True
Enter while loop and execute <code>
Go back and evaluate <condition> -> True

Enter while loop and execute <code>

while <condition>:

ldea of while loops <code>

Evaluate <condition> -> True

Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> True

while <condition>:

ldea of while loops <code>

Evaluate <condition> -> True

Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> True

Enter while loop and execute <code>

while <condition>:

ldea of while loops <code>

Evaluate <condition> -> True

Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> False

while <condition>:

ldea of while loops <code>

Evaluate <condition> -> True

Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> True
Enter while loop and execute <code>

Go back and evaluate <condition> -> False

Skip over <code> inside while loop and move on

Common types of while loops

while <condition>:
<code>

<initialize x>
while x < 400:
<do something that modifies x>

while <conditionl> and <condition2>:
<code>

while <conditionl> or <condition2>:
<code>

Impact of and/or on while loops

while A and B: a‘ m‘dl while A or B: Or

print("both A and B are true”) print(“either A is true, B is
true, or both”)

A B A and B A B AorB

True True True True True True

True False False True False True

False True False False True True

False False False False False False

Truth table Truth table

Files

Assignments to review

+ Lab 5: letter frequencies

+ Lab 7: decoding hidden message

+ Lab 10: comparing different species

+ Homework 5: analyzing tweets from the Twitter file

+ Homework 8: Smith College map digitization

Writing the file of coordinates

write the (x,y) positions to a file
for point in building lst:

file.write(str(point.getX()) + " " + str(point.get¥()) + " ")
file.write("\n")

def main():
"""Read a text file of coordinates and draw buildings. Each
line of the text file is a separate building. The (Xx,y)
coordinates are read one right after the other, in pairs.

set up our graphics window

width = 760

height = 620

win = GraphWin("Digital Map", width, height)

open the file of building coordinates
file = open("buildings.txt", "r")

read each line of the file (one building) Readmg theﬁle

for line in file: of coordinates
tokens = line.strip().split() # split the line

read in pairs to get (x,y) coordinates
point lst = []
for i in range(0,len(tokens),2):
p = Point(tokens[i], tokens[i+l])
point lst.append(p)

00
Y4
-
O
=
Q
=
O

after building the list of points, create a Polygon
p = Polygon(point_1lst)

p.setFill("lightgreen")

p.draw(win)

close the file
file.close()

Dictionaries

Dictionaries

+ Created using: {}

Dictionaries

+ Created using: {}

+ To add pairs right away: {0: “A”, 1: “B"}

Dictionaries

+ Created using: {}
+ To add pairs right away: {0: “A”, 1: “B"}

+ Think about dictionaries like lists with a special index

Dictionaries

+ Created using: {}
+ To add pairs right away: {0: "A”, 1: "B}
+ Think about dictionaries like lists with a special index

+ Special index is the “key” (unique), element at that key is the “value”

Dictionaries

+ Created using: {}

+ To add pairs right away: {0: "A”, 1: "B}

+ Think about dictionaries like lists with a special index

+ Special index is the “key” (unique), element at that key is the “value”

4+ Unlike lists: not ordered

Dictionaries

+ Created using: {}

+ To add pairs right away: {0: "A”, 1: "B}

+ Think about dictionaries like lists with a special index

+ Special index is the “key” (unique), element at that key is the “value”
+ Unlike lists: not ordered

+ Like lists: can get (lookup), set (assign, mutate)

Dictionaries

+ Created using: {}

+ To add pairs right away: {0: "A”, 1: "B}

+ Think about dictionaries like lists with a special index

+ Special index is the “key” (unique), element at that key is the “value”
+ Unlike lists: not ordered

+ Like lists: can get (lookup), set (assign, mutate)

+ To add more pairs later: dictionary[2] = “C”

Combine dictionaries, files,

and while loops

Step 1: make the dictionary

+ Find your random partner and introduce yourselves

+ In main, write some code that will ask the user for their gg
number and their name (two questions)

+ Use the first two and last two digits for speed and privacy

+ Add the g9 number (key) and name (value) to a dictionary
that will keep track of individuals using their gg numbers

>>>
Enter your 99 number: 9995
Enter your name: Sara Mathieson
{9995: 'Sara Mathieson'}

>>>

Step 2: use a while loop

+ Create a while loop that will keep asking for more gg
numbers and student names (use you and your partner’s info)

+ Create a way to stop the while loop (i.e. user enters -1 for
their number or “stop” for their name)

>>>
Enter your 99 number: 9995

Enter your name: Sara Mathieson

Enter your 99 number: 9921

Enter your name: Alan Turing

Enter your 99 number: -1

{9921: 'Alan Turing', 9995: 'Sara Mathieson'}
>>>

Step 3: write dictionary data to a file

+ After the while loop is over, write each number and name
to a file using a loop over the keys of the dictionary

| NON |] data.txt

9921 Alan Turing
9995 Sara Mathieson

