CSC 111: @
Intro to Computer Science

through Programming

Spring 2017
Prof. Sara Mathieson

+ Homework g is due April 18 (last homework, start early!)
+ Final project is due May 2
+ Remaining graded labs: Lab 10, Lab 11

+ Labs on last two days of classes: practice final

+ Last day to pre-register for CSC 212!

Outline: 4/14

+Recap classes so far

+Review and practice: dictionaries, while
loops, and files

4+ Next week: continue classes with a focus
on biology and physics applications

Recap Classes

Informal quiz: discuss with a partner

class Student:

How many instance variables def _ init_ (self, name):

are contained within this name 1st = name.split()

class? self.first = name 1lst[0]
self.last = name lst[1l:]

Complete the add_class(..) self.class_lst = []
method. add class(self, new class):

Write a getter for the first drop_class(self, old_class):
name self.class lst.remove(old class)

Do constructors return
something? Why or why not?

Informal quiz: discuss with a partner

class Student:

How many instance variables def _ init_ (self, name):

are contained within this name 1st = name.split()

class? 3 self.first = name 1lst[0]
self.last = name lst[1l:]

Complete the add_class(..) self.class_lst = []
method. add class(self, new class):

Write a getter for the first drop_class(self, old_class):
name self.class lst.remove(old class)

Do constructors return
something? Why or why not?

Informal quiz: discuss with a partner

class Student:

How many instance variables def _ init_ (self, name):

are contained within this name 1st = name.split()

class? 3 self.first = name 1lst[0]
self.last = name lst[1l:]

Complete the add_class(..) self.class_lst = []
method. add class(self, new class):

self.class lst.append(new_class)

Write a getter for the first drop_class(self, old_class):
name self.class lst.remove(old class)

Do constructors return
something? Why or why not?

Informal quiz: discuss with a partner

class Student:

How many instance variables def _ init_ (self, name):

are contained within this name 1st = name.split()

class? 3 self.first = name 1lst[0]
self.last = name lst[1l:]

Complete the add_class(..) self.class_lst = []
method. def add _class(self, new_class):

self.class lst.append(new_class)

Write a getter for the first def drop_class(self, old_class):
name self.class lst.remove(old class)

def get first(self):
return self.first

Do constructors return
something? Why or why not?

Informal quiz: discuss with a partner

class Student:

How many instance variables def _ init_ (self, name):

are contained within this name 1st = name.split()

class? 3 self.first = name 1lst[0]
self.last = name lst[1l:]

Complete the add_class(..) self.class_lst = []
method. def add_class(self, new class):

self.class lst.append(new _class)

Write a getter for the first def drop_class(self, old_class):
name self.class lst.remove(old class)

def get first(self):
return self.first

Do constructors return

something? Why or why not? They return an instance of the class

that we can assign to a variable, but
we do not use the keyword return.

Review dictionaries

ldea behind dictionaries

+ When we index into a list, we have to use an integer.

+ What if we could make the index any type we wanted?

ldea behind dictionaries

+ When we index into a list, we have to use an integer.
+ What if we could make the index any type we wanted?

+ Dictionaries give us a way to be flexible about the index, without
sacrificing speed.

+ New type (like list, str, bool, int, float), now we have dict (mutable)

ldea behind dictionaries

+ When we index into a list, we have to use an integer.
+ What if we could make the index any type we wanted?

+ Dictionaries give us a way to be flexible about the index, without
sacrificing speed.

+ New type (like list, str, bool, int, float), now we have dict (mutable)

+ Example: counts of choosing a random color over and over again

red orange green blue purple

98 83 113 101 92

Review while loops

While loop structures

+ One common while loop structure: assign a numerical variable
before the loop, then update it's value within the loop. The
condition compares the variable to some fixed value.

var = __ # assign a variable
while var < other value:

var = __ # update variable

While loop structures

+ One common while loop structure: assign a numerical variable
before the loop, then update it's value within the loop. The
condition compares the variable to some fixed value.

var = __ # assign a variable
while var < other value:

var = __ # update variable

+ Another common while loop structure: assign a boolean variable
to True before the loop, then flip to False if some condition is met
within the loop.

my bool = True # assign a variable
while my bool:

1f <condition>:
my bool = False # update variable

Review files

Live coding

