
CS 212: Programming with Data Structures
Handout 9: March 8, 2016

Midterm Topics:

1. Data Structures: know the typical fields/methods for each data structure and pros/cons of each
one. Be able to use them in an application.

• Arrays (Review: Class 2-3, HW 1 & 4)

• Linked Lists (Review: Class 7-8, Lab 4, HW 4 & 5)

• Stacks (Review: Class 9-10, Lab 5, HW 5)

• Queues (Lab 6, Class 12)

2. Java fundamentals

• Class structure (fields, methods, constructors)

• Java keywords and vocab (Review: vocab list)

• Primitive types vs. objects

3. Inheritance and Interfaces (Review: Class 4-5)

• Syntax and keywords

• Difference between implementing an interface and extending a class

• Uses in Graphics and GUIs.

4. Runtime analysis (Review: Class 7-8, HW 4)

• Relationship between runtime analysis and loops

• Using “compareTo” operations to evaluate sorting runtimes

• Big O notation, i.e. O(1), O(n), O(n2), etc.

5. Algorithms

• Sorting: insertion sort and bubble sort (Review: Class 8, HW 4)

• Stack algorithms: arithmetic expressions (Review: Class 10, HW 5)

• Using a queue to handle different speed of input/output (Review: Lab 6)

6. Misc

• Iterators (Review: Video, HW 5)

• Generics (Review: Class 9, last few HWs and Labs)

Page 1 of 4

CS 212: Programming with Data Structures
Handout 9: March 8, 2016

Midterm Practice:

1. Loops, Lists, Arrays, and Generics. Suppose there is a House class, that implements Compara-
ble<House>. It has one private field, an int, representing the price of the house. There is a
constructor that creates a new House with a given initial price. A House is greater than another
House if it has a higher price. 212 has been tasked with writing two methods in main: one to
find the House with the minimum price given a list of Houses, and one to find the index of a
House with a given price in a given array of Houses. Student X has written the following code to
accomplish these tasks.

/** Return the house with the minimum price. */

public static House minHouse(LinkedList<House> list) {

House minHouse = list.get(0); // start out with the first house

int i=1;

while (i < list.size()) {

if (list.get(i).compareTo(minHouse) < 0) {

minHouse = list.get(i);

}

i++;

}

return minHouse;

}

/**

* Return the index of the house with the given price.

* If no house with this price, return -1.

*/

public static int getPriceIndex(House[] array, int price) {

int rightIndex = -1;

for (int i=0; i < array.length; i++) {

if (array[i].getPrice() == price) {

rightIndex = i;

}

}

return rightIndex;

}

Do these functions accomplish the desired tasks? Why or why not? If not, correct the method(s).
If yes, find a way to make the code faster or more elegant. If you have time, write the House class
(make sure to include a constructor and all necessary methods).

Page 2 of 4

CS 212: Programming with Data Structures
Handout 9: March 8, 2016

2. Queues and Runtime. 212 is given a Queue class with the following completely functional meth-
ods: add, remove, isEmpty, element, and size. Then the task is to write a method within the
Queue class that adds all the elements of another Queue, B, to the end of the given queue (while
still maintaining order within B). However, this must be accomplished without destroying B (note
we shouldn’t use uppercase, one-letter variable names, but it is easier to write on paper with
shorter variables). Student X has written the following code.

private void addAll(Queue<E> B) {

while (!B.isEmpty()) {

E element = B.remove();

this.add(element);

B.add(element);

}

}

What is the error in this code? How could you fix it? How could you fix it if you didn’t have the
size method? What is the runtime of your resulting method?

3. Iterators. Use an iterator to write a few lines of code (not a method) to split a linked list of
Strings into two linked lists of Strings, with every other element going to a different list. You may
assume the original list has an even number of elements.

4. Data Structures (Fall 15).

MIDTERM EXAMINATION
CSC 212 ♦ FALL 2015

You may use one single-sided 8.5"x11" sheet of notes on this exam. You may not consult other sources of information. You will
have the entire period (110 minutes) to complete your work. All work should be written in the exam booklet. Partial credit will be
granted where appropriate if intermediate steps are shown.

Vocabulary (16 points)
Define all of the bolded terms below, making sure to explain the differences within each pair.

a.) field vs. method
b.) public vs. private
c.) extends (a parent class) vs. implements (an interface)
d.) javadoc comment vs. block comment
e.) s1 == s2 vs. s1.equals(s2) (assuming s1 and s2 are strings)
f.) int vs. Integer
g.) empty LinkedList vs. null LinkedList (draw a picture showing the difference)
h.) array vs. ArrayList

Data Structures (16 points)
Consider the Java class defined below, which implements a data structure we have studied. Answer the
questions that follow.

import java.util.*;
public class DataStructure<E> {
 private Stack<E> A;
 private Stack<E> B;

 public DataStructure () {
 A = new Stack<E>();
 B = new Stack<E>();
 }

 private void to(int i) {
 for (int j = 0; j < i; j++) {
 B.push(A.pop());
 }
 }

 private void from(int i) {
 for (int j = 0; j < i; j++) {
 A.push(B.pop());
 }
 }

 public E get(int i) {
 E answer;
 to(i);
 answer = A.pop();
 A.push(answer);
 from(i);
 return answer;
 }

 public void set(E x, int i) {
 to(i);
 if (!A.isEmpty()) {
 A.pop();
 }
 A.push(x);
 from(i);
 }
}

a.) Which methods of this class may be called by a different class?
b.) Which abstract data structure is this class implementing?
c.) How does this implementation compare to the usual implementation in efficiency?
d.) Looking just at the public fields of this class, is there any way for a programmer to tell that it is

implemented using stacks? Explain.

a.) Which methods of this class may be called by a different class?
b.) Which abstract data structure is this class implementing?
c.) How does this implementation compare to the usual implementation in efficiency?
d.) Looking just at the public methods of this class, is there any way for a programmer to tell
that it is implemented using stacks? Explain.

Page 3 of 4

CS 212: Programming with Data Structures
Handout 9: March 8, 2016

5. Linked Lists (Fall 15).Linked Lists (16 points)
Consider the diagram below, showing two linked lists. Answer the questions that follow, assuming that
each one begins with the configuration shown below. An example is done for you.

a.) [Example] Write code to update the links as necessary to remove B from list1.
Answer: list1.head.next = null; list1.tail = list1.head;

b.) Write code to make list2 a shallow copy of list1. Draw a diagram showing the link structure
after this operation.

c.) Write code to swap the order of the elements in list1. Draw a diagram showing the link
structure after this operation.

d.) Write code to update links as necessary to append list2 at the end of list1, leaving list2 empty.
Draw a diagram showing the link structure after this operation.

e.) Write code to update links as necessary to insert list2 within list1 between A and B, leaving list2
as a shallow copy of this part of list1. Draw a diagram showing the link structure after this
operation.

Stacks (16 points)
Consider the input stream ABCDEFGHIJKLM, where each letter is a token. (A is the first and M is the
last.) Suppose that you want to write code that will convert this to a new stream in a different order,
using a single stack. Using three operations, push, pop, and pass, write pseudocode that would
transform the stream above into the new sequence DGFEHCJLKIBMA.

(Note: In this context, push takes an input token and adds it to the stack, pass takes an input token and
sends it to output, and pop takes a token off the stack and sends it to output.)

Example: If the input was ABC and the desired output was BCA, the answer is push; pass; pass; pop.

Class Design (8 points)
Briefly describe the Model-View-Controller paradigm, describing the duties of each role and how they
interact with each other. Give an example from a homework or lab that fits into this paradigm, and
identify for this example which class takes on each role.

A B

head tail

list1

C D

head tail

list2

a.) Write code to update the links as necessary to remove B from list1.

c.) Write code to swap the order of the elements in list1. Draw a diagram showing the link
structure after this operation.

Page 4 of 4

