
KEY:  MIDTERM EXAMINATION 
CSC 112 ♦ SPRING 2011 

  
You will have 110 minutes to complete this exam.  All work should be written  in the exam  
booklet.  Start with the questions that you know how to do, and try not to spend too long  
on any one question.  Partial credit will be granted where appropriate.  Good luck! 
 
 
1.  Program Simulation  (16 points) 

 
Consider the short program shown below. 
 
public class Foo { 
 
    public Foo link; 
 
    public int data; 
 
    public Foo(Foo link, int data) { 
        this.link = link; 
        this.data = data; 
    } 
 
    public void addOne() { 
        data = data+1;  // Checkpoint E 
    } 
 
 public void copyUp() { 
        data = link.data; 
    } 
 
    public static void main(String[] args) { 
        Foo f1 = new Foo(null,7); 

        Foo f2 = new Foo(f1,14); 
        f1.link = f2;  //Checkpoint A 
 
        f2.link = new Foo(null,21); 
        f2.link.link = new Foo(null,28); 
        f2.link.link.link = f1;  // Checkpoint B 
 
        Foo f3 = f1; 
        for (int i = 0; i < 4; i++) { 
            f3.copyUp(); 
            f3 = f3.link; 
        }  // Checkpoint C 
 
        f1.link = f1; 
        f1.copyUp(); 
        f2.link.link.data = 35;  // Checkpoint D 
     
        f2.link.addOne(); 
    } 
}

 
 
The diagram at right describes the state of memory at 
checkpoint A.  Draw an equivalent diagram for the 
memory at checkpoint B, at checkpoint C, at 
checkpoint D, and at checkpoint E. 
 
  



 

 

  



2.  Vocabulary (12 points) 

 
In the program below, identify a line that contains an example of each of the vocabulary terms that 
follow, or indicate that the requested item is not present in this program.  If you do identify a line, 
please also indicate which part of the line corresponds to the term.  (Some comments have been 
deliberately omitted or altered to avoid giving away the answers.) 
 

import java.awt.*; 
import javax.swing.*; 
import java.awt.event.*; 
 
/** ○A  

 *  A simple component that draws a color-changing circle. 
 * 
 *  @author Nicholas R. Howe 
 *  @version CSC 112, 9 March 2011 
 */ 
class JDisk extends JComponent { 
    // The color of the disk 
    private Color color;  ○B  ○J  

 
    JDisk() {  ○B  ○G  

        super();  ○D  

        addMouseListener(new Clicker());  ○D  ○L  

 color = Color.RED;  ○I  

    } 
 
    public Color getColor() {  ○B  ○J   

 return color; 
    } 

 
 
    public void setColor(Color c) {  ○B  ○J  ○K  

 color = c; 
    } 
 
    public void paintComponent(Graphics g) {  ○B  ○K  

                  g.setColor(color);  ○H  

 g.fillOval(0,0,20,20);  ○H  ○L  

    } 
 
    public Dimension getMinimumSize() {  ○B  ○J  

 return new Dimension(20,20);  ○D  

    } 
 
    public Dimension getPreferredSize() {  ○B  ○J  

 return new Dimension(20,20);  ○D  

    } 
 
    public class Clicker extends MouseAdapter {  ○B ○E  ○J  

        public void mouseClicked(MouseEvent e) {  ○F  ○J  ○K  

            color = Color.BLACK;  ○I  

        } 
    } 
}

 
a.)  A Javadoc comment 
b.)  A class member 
c.)  A local variable declaration  Not present 
d.)  An initialization of an instance of some class 
e.)  A nested class (sometimes called a local class) 
f.)  An event handler 
g.)  A constructor 
h.)  An external method call (i.e., a call to a method of some other class than that defined here) 
i.)  Use of a static member of some class. 
j.)  A qualifier 



k.) A method parameter 
l.)  A method argument 
3.  Stacks (12 points) 

 
There is a child’s toy called the Towers of Hanoi, consisting of a central spire around which colored rings 
may be stacked.  The rings come in various sizes and colors, and the usual stacking order is to have the 
largest rings at the bottom and the smallest at the top.  The toy acts as a stack:  the last ring added must 
be removed before any of the rings under it. 
 
Suppose that you have three rings and three spires, starting in the configuration shown below (all rings 
on A, with the largest at the bottom and the smallest at the top).  Your goal is to move all rings to B, 
while maintaining the constraint that a larger ring may never be placed onto a spire on top of a smaller 
ring.  Write a set of stack operations that would achieve this objective.  For example, C.push(A.pop()) 
would move the smallest ring from A to C.  At this point, a second attempt to do C.push(A.pop()) would 
not be allowed, because ring Y cannot go on top of ring X. 
 

 
 
B.push(A.pop()); 
C.push(A.pop()); 
C.push(B.pop()); 
B.push(A.pop()); 
A.push(C.pop()); 
B.push(C.pop()); 
B.push(A.pop()); 
  



4.  Queues  (16 points) 

 
In most languages, the array is a basic type.  However,  there is no absolute requirement that a language 
should provide arrays as a predefined part of the language.  One early hardware design for computer 
memory, called delay-line memory, used a column of mercury to store bits.  Electronic signals were 
introduced into the mercury column at one end, and could be read some time later at the other end.  
(They would then be reintroduced at the head of the column so that no data were lost.)  In sum, this 
form of memory functioned more as a queue than as an array.  If computers had continued to use this 
form of memory, it might have been more natural to design a language around the queue.  For this 
problem, you are to imagine that Java provides a BasicQueue class as a basic type, and your job is to 
implement class Array.  To be more precise, assume that Queue provides methods in(x), out(), and size() 
– note that out() returns the element removed, and size() tells the number of elements stored.  The 
array datatype must implement get(i) and set(i,x); we will write only set for this problem, plus a 
constructor that allocates space and sets all elements to 0.  Elements of the array will be stored in the 
queue, with the convention that index 0 appears at the head, etc.  (Of course, implementing get or set 
will require cycling through the elements once, but should end up with each element in its original 
position.)  To get you started, a framework appears below. 
 
/** Defines an array using a queue for storage */ 
public class Array { 
    /** Here is the queue that will store the array values */ 
    private BasicQueue q; 
 
    /** Allocate the storage and put N zeros into the array */ 
    public Array(int N) { 
        q = new Queue(); 
        for (int i = 0; i < N; i++) { 
           q.in(0); 
        } 
    } 
 
    /** Set the array element at index i to value x */ 
    public void set(int i, int x) { 
        int j; 
        for (j=0; j < q.size(); j++) { 
            if (j == i) { 
                q.out(); 
                q.in(x); 
            } else { 
                q.in(q.out()); 
            } 
        } 
    } 



} 
5.  Lists & Iterators  (12 points) 

 
Suppose that a particular list begins with the contents shown below. 

 
For each of the diagrams that follow, write a series of iterator method calls that will transform the 
preceding state into the one shown, using the list iterator provided and using the smallest number of 
method calls possible.  The first is done for you as an example. 
 
a.)  Begin with ListIterator mark = list.listIterator(4); 

 
Answer:  mark.previous(); mark.remove(); 
 
b.)  Begin with ListIterator mark = list.listIterator(); 

 
mark.add(‘W’); mark.add(‘O’); 
 
c.)  Begin with ListIterator mark = list.listIterator(); 

 
mark.next(); mark.next(); mark.next(); mark.next(); mark.set(‘E’); 
 
d.)  Begin with ListIterator mark = list.listIterator(2); 

 
mark.previous(); mark.remove(); mark.previous(); mark.remove(); mark.next(); mark.add(‘O’); 
mark.next(); mark.set(‘W’); 
 
 
  



6.  Program Design & Classes  (16 points) 

 
Suppose that you are designing a program that will play the game 
of Nim against the computer using a graphical interface.  The game 
is very simple:  at the beginning, a random number of stones (i.e., 
circles) is displayed in the window.  The players take turns removing 
either one or two stones at a time, and the one forced to take the 
last stone is the loser.   A mock-up of the proposed user interface 
appears at right. 
 
Describe the major new classes you would expect to have to write to implement this program in a well-
designed Java application.  Give concise description of the role of each class, and how you would expect 
it to interact with the other classes in your design.  You do not need to write code, and you do not need 
to describe classes that Java already provides (such as JButton) although you may refer to them if 
necessary.  Do include a description of any nested classes, and specify in which class execution would 
begin.  If you can, relate your design to the MVC software pattern. 
 
One class will act as a GUI manager (the controller in the Model-Viewer-Controller or MVC software 
pattern).  Its job is to set up all the components and manage their interaction.  It will have at least one 
nested listener class to respond to the buttons at the bottom of the window. 
 
Another class will manage the state of the game.  It will keep track of how many stones are left, and 
have methods for valid moves.  When it is the computer’s turn it will have a method to compute the next 
move.  It may also be responsible for displaying the stones in the window, or there may be a separate 
class for that.  If separate, then the display class would be the view in the MVC pattern, and the game 
state class itself would be the model. 
 
  



7.  Sorting  (16 points) 

 
Consider the sequence of numbers below, which are to be sorted in increasing order from left  
to right.  Simulate the sorting algorithms as specified. 
 
 10 20 15 18 5 30 0 25 
 
a.)  Insertion sort, array implementation, growing the sorted region from left to right.  Show the state of 
the array after every swap. 
 
 10 20 15 18 5 30 0 25 
 10 15 20 18 5 30 0 25 
 10 15 18 20 5 30 0 25 
 10 15 18 5 20 30 0 25 
 10 15 5 18 20 30 0 25 
 10 5 15 18 20 30 0 25 
 5 10 15 18 20 30 0 25 

 5 10 15 18 20 0 30 25 
 5 10 15 18 0 20 30 25 
 5 10 15 0 18 20 30 25 
 5 10 0 15 18 20 30 25 
 5 0 10 15 18 20 30 25 
 0 5 10 15 18 20 30 25 
 0 5 10 15 18 20 25 30

 
 
b.)  Merge sort, list implementation.  Show the state of the lists after each merge operation. 
 10 20  15  18  5  30  0  25 
 15  18  5  30  0  25 10, 20 
 5  30  0  25 10, 20  15 , 18   
 0  25 10, 20  15 , 18   5 , 30   
 10, 20  15 , 18   5 , 30   0, 25  
 5 , 30   0, 25  10, 15, 18, 20 
 10, 15, 18, 20  0, 5, 25, 30  
 0, 5, 10, 15, 18, 20, 25, 30 
 


