

FINAL EXAMINATION
MAY 2013

CSC 112 ♦ SECTION 01
INSTRUCTOR: NICHOLAS R. HOWE

YOU MAY USE TWO 8.5"x11" SHEETS OF NOTES ON THIS EXAM.
YOU MAY NOT USE THE TEXTBOOK, A COMPUTER, OR ANY OTHER INFORMATION

SOURCE BESIDES YOUR TWO PAGES OF NOTES.

All work should be written in the exam booklet. Partial credit will be granted where appropriate if
intermediate steps are shown.

1. Vocabulary (8 pts)

Identify the short term or phrase associated with the following definitions.

a.) A piece of code that specifies the type of a variable or field, possibly with one or more
qualifiers.

b.) Creation of space on the heap to store the data for some reference type; typically
requires use of the keyword new. Automatically triggers execution of a constructor to fill in
the data.

c.) The unique identifying pattern formed by the return type of a method, its name, and the
types of its parameters/arguments.

d.) General term referring to fields, methods, or nested classes appearing within a class.

e.) In a subclass, replacing the definition of a method inherited from the parent

f.) In a subclass, creating a new method with the same name as an inherited method but a
different list of parameters.

g.) Word describing the eight types in java that are not stored by reference.

h.) Qualifier used to indicate that a field or method does not depend on any particular
instance of a class, and instead exists as part of the class as a whole.

2. Sorting (8 points)

Consider the array shown below. For each sorting algorithm indicated, show how the array would
be sorted in place from smallest to largest by giving the state of the array after each swap.

33 65 81 23 50 91 58 85 74 59

 a.) Insertion sort

 b.) Heap sort

3. Memory Models (12 points)

Consider the short program below. Draw a diagram showing the state of memory when the
execution reaches the line with the comment CHECKPOINT. Clearly show which variables are on the
stack, and which are on the heap. Include the names of all variables in your diagram. Assume that
there are no command line arguments.

public class Memory {
 private int x;

 public Memory(int x) {
 this.x = x;
 }

 public static Memory combine(Memory m1, Memory m2) {
 Memory m = new Memory(m1.x+m2.x);
 // CHECKPOINT
 return m;
 }

 public static void main(String[] args) {
 int x = 7;
 Memory m = new Memory(8);
 m = combine(m,m);
 }
}

4. Recursion (10 points)

Below are several attempts to write recursive programs. For each, determine whether or not it will
work as desired. If it won’t work, determine what is wrong and how it can be fixed. Assume that all
methods compile without errors; this question is about their runtime behavior.

 private static int sum = 0;
 /** compute the sum of all the elements in a binary tree */
a. public static int sumTree(BinaryTree<Integer> tree) {
 if (tree==null) {
 sum = 0;
 } else {
 sum = tree.getData();
 sum += sumTree(tree.getLeft());
 sum += sumTree(tree.getRight());
 }
 return sum;
 }

 /** compute the sum of an array */
b. public int sum(int[] a, int n) {
 return sum(a,n-1)+a[n-1];
 }

 /** compute the nth fibonacci number */
c. public static int fib(int n) {
 if (n==1) {
 return 1;
 } else {
 return fib(n-1)+fib(n-2);
 }
 }

 /** compute the gcd of m and n */
d. public static int gcd(int m, int n) {
 if (m < n) {
 return gcd(m,n-m);
 } else if (m > n) {
 return gcd(m-n,n);
 } else {
 return m;
 }
 }

 /** draw a fractal dragon */
e. private static void drawDragon(int rank, Point pA, Point pD, Graphics g) {
 if (rank <= 0) {
 g.drawLine(pA.x,pA.y,pD.x,pD.y);
 } else {
 int dx = (pD.x-pA.x)/4;
 int dy = (pD.y-pA.y)/4;
 Point pB = new Point(pA.x-dy+dx,pA.y+dx+dy);
 Point pC = new Point(pD.x+dy-dx,pD.y-dx-dy);
 drawDragon(rank-1,pA,pB,g);
 drawDragon(rank,pB,pC,g);
 drawDragon(rank-1,pC,pD,g);
 }
 }

5. Trees (12 points)

A particular tree generates the following output when the nodes are traversed in particular orders.
Reproduce the tree.

 Preorder: K D C J B I H E A G F L M P N
 Inorder: J C I B H D K A G E M L P F N
 Postorder: J I H B C D G A M P L N F E K

6. Lists (16 points)

Consider the diagram below, and write code to accomplish the tasks listed. All fields are public.

 a.) Using mark, change the data whose value is “C” to “E”

 b.) Using list, change the data whose value is “B” to “F”

c.) Assuming that this list is implementing a queue data structure, update the date as
necessary for an out operation.

d.) Using mark, remove the element whose value is “C” from the list.

7. Data Structure Analysis (12 points)

Consider the data structure below. (Names of methods and variables have been deliberately
obscured to avoid giving away information.)

import java.util.*;
public class DataStructure<A,B> {
 private LinkedList<A> alist = new LinkedList<A>();
 private LinkedList blist = new LinkedList();
 public void op1(A a,B b) {
 if (alist.contains(a)) {
 blist.set(alist.indexOf(a),b);
 } else {
 alist.add(a);
 blist.add(b);
 }
 }
 public B op2(A a) {
 if (alist.contains(a)) {
 return blist.get(alist.indexOf(a));
 } else {
 return null;
 }
 }
}

 a.) This class implements an abstract data type that we have studied. What is it? (Full credit
for the general name; partial credit for any related data structure.)

 b.) Determine the running time of method op1 (big-O notation) in terms of n, the number of
times it has been called in the past.

 c.) Determine the running time of method op2 (big-O notation) in terms of n, the number of
times op1 has been called in the past.

8. Graphs (12 points)

A graph has vertices {S,A,B,C,D,T} arranged in a 3x3 grid as shown at
right. The capacities of different edges in this graph are shown in the
table below, along with the current flow along certain edges.

a.) Draw the graph, showing all edges with nonzero capacity. You
don’t need to show any flow for this part.

b.) Draw the residual graph.
c.) Identify an augmenting path through which more flow could pass

from S to T.

Edge Capacity Flow
S to A 20 10
A to D 10 10
D to T 20 20
S to B 10 10
B to C 10 10
C to T 10 0
A to B 10 0
B to D 10 0
C to D 10 10

9. Programming Style (10 points)

We have focused on the elimination of duplication as one principle of good programming style.
Explain the motivation behind this goal, and give at least five examples of ways you can reduce
duplication in your own programs.

