Midterm: Spring 2016

CSC 212: Programming with Data Structures
Midterm: Spring 2016

’Thursday, March 10, 1—2:50pm‘

e This is an in-class exam on the material through Lab 6.

e [t is closed notes, closed Internet, and closed technology, but you may use a “cheat sheet”.

e Your cheat sheet must be hand-written, created by you, 8.5 x 11 inches, and double-sided (at most).

e [will come in a few times to answer questions.

e If there is a clarification to be made, I will write it on the board.

e Do not discuss the exam with other students and respect the honor code of doing your own work.

e If you are unable to make progress on any part of the exam, tell me what you tried; describe your thought process.

e Even if you are not finished, your exam must be turned in at the end of lab to maintain fairness.

e For ease of writing, I'll encourage using uppercase, single-letter variable names, but just for the exam!

Name

Part 1 /15
Part 2 /15
Part 3 /20
Part 4 /20
Part 5 /15
Part 6 /15
Total /100

Page 1 of 10

Midterm: Spring 2016

Part 1: Warmup and Vocab

(a) What does FIFO stand for? What classical data structure has this property?

(b) What does FILO stand for? What classical data structure has this property?

(c) For each line of the code below, use the following phrases to describe what is happening:
“declare”, “initialize”, “assign”, “memory allocated”, “get”, “set”

int[] X;

X = new int[3];
int[] Y;

Y = X;

Y[0] = 10;

int first = X[0];

Draw a diagram of the end result, showing X and Y clearly. What is first?

Page 2 of 10

Midterm: Spring 2016

(d) Student X is writing a ListTester class, but they are confused about how to use the following
LinkedList class to add an element to the end of a list. Student X writes:

public class ListTester {

public static void mai
List myList = new
Node firstClass =
Node secondClass =
myList.tail = firs
myList.tail = seco

n(String[] args) {
List();

new Node("212");
new Node("103");
tClass;

ndClass;

public class LinkedList {
public Node head;
public Node tail;

private void add(String element) {

3

What is wrong with this code? What changes could be made to LinkedList (and/or Node)
to prevent Student X from doing this?

(e) Justify your answers to the following questions.

i. Is JComponent an interface or a class?

ii. What is an example of a class we have studied that is built upon JComponent?

iii. In the model-view-controller paradigm, what piece does your example fall under?

Page 3 of 10

Midterm: Spring 2016

Part 2: Stacks

Write a method that will take in two stacks (A and B) of the same size (n) and interleave them,
creating one stack (C). Whatever was at the top of stack A should now be at the top of stack C,
as shown in the picture below for n = 4:

| |
| b, |
| a |
| b, |
3	b,	a
ay	b,	bs
a	by	3
a	b,	b,
A B C

It is okay to destroy the original stacks in the process. The only Stack methods you may use are
peek, push, pop, and isEmpty.

Stack interleave(Stack A, Stack B) {

e Based on the description and partial signature of the method, what Java keyword(s) should
also be included in the method signature? Write on the dotted line.

e What is the runtime of your method, in terms of the size of each stack, n? Justify your
answer.

Page 4 of 10

Midterm: Spring 2016

Part 3: Arrays and Iterators

Complete the code below to write an iterator for an array of Strings. In particular, think about
whether or not you want to add any fields or methods.

import java.util.Iterator;
public class Arraylterator implements Iterator<String> {

private String[] array;

public ArrayIterator(String[] array) {
this.array = array;

public boolean hasNext() {

public String next() {

e Is it necessary to have an iterator for an array? Are there any advantages? Be specific.

e What Java construct is java.util.Iterator? What do hasNext() and next() look like
inside java.util.Iterator?

Page 5 of 10

Midterm: Spring 2016

Part 4: Loops and Linked Lists

In this question we’ll be implementing a new generic data structure called a Loop<E>, using a
singly linked list of nodes as the underlying data structure. Each node should have a pointer
to the next node so that they form a continuous loop (like beads on a necklace). However, your
loop data structure should have one field, a pointer to the “start” Node.

(a) Draw a diagram showing a single element being added to an empty loop. Then write code
that corresponds to this operation (does not have to be encapsulated as a method).

(b) Draw a new diagram showing another element being added to the loop at the “start” (so now
there are exactly two elements, starting with the newest one). Then write code to execute
this operation (does not have to be a method).

Page 6 of 10

Midterm: Spring 2016

(c) Finally, draw a new diagram that shows an element being added to the start of the loop, but
with an arbitrary number of elements already in the loop. Then write code for a method that
will accomplish this general task. Explain the issues involved, including efficiency (although
it’s not a requirement that your method be efficient). You can choose to augment the fields
of your Node<E> data structure or your Loop<E> data structure, or leave them as they are,
as long as your method accomplishes the goal.

Page 7 of 10

Midterm: Spring 2016

Part 5: Sorting

Inspired by 212, after graduation you decide to work for Sorters, Inc. that provides sorting
algorithms for every possible situation. One client explains that often their arrays are already
mostly sorted (smallest to largest), so the version of insertion sort that you've provided (the one
we covered in class) is doing too much extra work. Describe (using code or pseudocode), a modified
insertion sort that will be more efficient with somewhat sorted arrays. An example is below:

int[] A =43, 5, 1, 8, 17, 15, 29}

Requirements:

e Your algorithm should not modify the original array

e You should return a new sorted LinkedList

If you ran your algorithm on the example list above, ezactly how many comparisons are performed?

Page 8 of 10

Midterm: Spring 2016

Part 6: Runtime analysis

(a) What is the runtime of the shunting yard algorithm, in terms of the number of tokens n?
Justify your answer.

(b) What is the runtime of the code below, in terms of n?

for (int i=0; i < n; i++) {
for (int j=0; j < (int) (n/Math.pow(2,i)); j++) {
array[i] [j] = 1;
+
}

Justify your answer. For fun: prove your answer.

Page 9 of 10

Midterm: Spring 2016

More space (tell me what problem this is for):

Page 10 of 10

