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Motivation 
●  TensorFlow by Google 

○  Open source library for mathematical computation, especially good for Machine Learning 

○  Scalability - can be deployed to multiple CPUs/ GPUs  

○  Data flow graph architecture 

■  Node - computation/ function 

■  Edges - multidimensional data (tensors) 

●  Convolutional Neural Network (CNN) 

 



CNN - Supervised Learning 
●  Image classification with CNN - Supervised Learning 

●  In the training process, use backward propagation and gradient descend to 
update all the filter value and weights   

  



Data 
●  CIFAR-10 

○  60,000 32x32 colour images in 10 classes - 50,000 training data, 10,000 test data  

○  Classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck 

○  In my project  

■  50,000  training images  

■  2,000 test images 

■  Binary version of the file - each image is represented by 3073 bytes 

●  1 byte is the label: 0~9 

●  1024 byte of the red value 

●  1024 byte of the green value 

●  1024 byte of the blue value 



Methods - TensorFlow CNN Tutorial  



Convolution Layer 
Image ᐧ Filter →  Feature Map 



Max Pooling Layer 
Reduce dimension but retain 
important information 



Location Response Normalization Layer 
●  Perform “lateral inhibition” 

●  Create a significant peak/ local maxima by subdue its neighbors 

●  Detect high frequency features with a large response to increase the sensory 
perception 



Fully Connected Layer + Softmax  
●  “Fully Connected” - every neuron(computation) in the previous layer is 

connected to every neuron on the next layer 

●  To use the high-level features extracted by convolutional and pooling layers 
for classifying the input into the various classes  

●  Softmax is the multi-classes classifier function and the output probabilities will 
sum to one  



Sample of the code 



Sample of the code 



Result 



Interpretation & Future Works 
●  Goal: Increase the accuracy in limited steps  

●  Compare the accuracies with different params and architectures 

○  Initial learning rate 

○  Learning rate decay rate (*) 
○  Number of epoch after learning rate starts decaying 
○  Number of convolutional layers 
○  Max steps 

●  TensorBoard - visualization of the learning (*) 



Thank you! 

Q & A! 



Detecting Musical 
Patterns Using 
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Motivation

• Fast growth in digital music collection
• With this large span of music genres, how can listeners 

effectively categorize these music collections?



Musical Terminology
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Musical Form



Data on Bach Music

• Analysis on Bach’s works for violin
• 2 Violin Concertos
• 6 Violin Sonatas and Partitas



Methods

Musical Instrument Digital Interface



MIDIS



MIDIS

• Python Library Mido
• MIDI Objects for 

Python
• Chose to ignore note 

durations



Multinomial HMM

• Unsupervised Approach

• Assumes discrete time 
steps

• Uses Viterbi

• HMMLearn Package



Results

• Trained with 5 hidden 
layers
• The 1st movement of 

the Bach A minor 
Concerto has about 5 
repetitive motifs

• The HMM calculates 
states based on the 
previous note

• Can’t discern much



Results

State 0 : 0.049
State 1 : 0.387
State 2 : 0.209
State 3 : 0.147
State 4 : 0.207



Results

• Run HMM in the hidden 
states from prior

• Trained on 3 hidden 
layers

State 0 : [State 1]
State 1 : [State 0 , State 4 ]
State 2 : [State 2,  State 3 ]



Future Work

• Parse data to be grouped by measures
• Run a N-gram model, which predicts based on the probability of multiple 

previous states
• Try other composers other than Bach



Questions?



• http://ieeexplore.ieee.org/document/4607732/?arnumber=4607732

http://ieeexplore.ieee.org/document/4607732/?arnumber=4607732
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K means and PCA on individual household 

electricity power consumption data  

Presentation by Karen Stefany Diaz 



Motivation / Why is it important? 

!  I wanted to create a visual representation of a data set for this final project �  

!  Data set used applied to a product used in our daily lives 

!  Data records household consumption of power over 4 years 

!  Can assist in seeing trends on energy usage and reduce the amount of energy 

we use 

!  Knowing when peak times can put a lot of strain on system 

!  Interest now on how to distribute systems (power grid) efficiently 

!  Can be useful in electricity load forecasting  

!  Important aspect of power systems planning and operation 

!  Forecasting permits using energy storage systems to decrease cost of energy for  

consumers 



Supervised vs Unsupervised 

!  Unsupervised methods in project 

!  K means + PCA 

!  No true labels were provided with Data Set 

!  Only information provided were the measurements and the date +time of 
each test  

!  date +time more of a special feature to look at afterward, not a label to be 
predicted 



Data 
 

!  Data provided from UCI Machine Learning Repository 

!  Measurements of electric power consumption in one household with a one-

minute sampling rate over a period of almost 4 years.  

!  Different electrical quantities and some sub-metering values are available. 



Data – Data Set Information 

!  This archive contains 2,075,259 measurements gathered between December 

2006 and November 2010 (47 months).  

!  Represents the active energy consumed every minute (in watt hour) in the 

household by electrical equipment measured in sub-meterings 1, 2 and 3.  

!  The dataset contains some missing values in the measurements. All calendar 

timestamps are present in the dataset but for some timestamps, the 

measurement values are missing:  

!  A missing value is represented by the absence of value between two 

consecutive semi-colon attribute separators.  



Data – Attribute Information  

Attribute Information (left to right): 

 

1.date: dd/mm/yyyy  
 

2.time: time in format hh:mm:ss  
 

3.global_active_power: household global minute-averaged active power (in 

kilowatt)  
 

4.global_reactive_power: household global minute-averaged reactive 

power (in kilowatt)  
 

5.voltage: minute-averaged voltage (in volt)  
6.global_intensity: household global minute-averaged current intensity (in 

ampere)  
 

7.sub_metering_1: energy sub-metering No. 1 (in watt-hour of active 

energy). It corresponds to the kitchen, containing mainly a dishwasher, 

an oven and a microwave (hot plates are not electric but gas powered).  
 

8.sub_metering_2: energy sub-metering No. 2 (in watt-hour of active 

energy). It corresponds to the laundry room, containing a washing-

machine, a tumble-drier, a refrigerator and a light.  
 

9.sub_metering_3: energy sub-metering No. 3 (in watt-hour of active 

energy). It corresponds to an electric water-heater and an air-

conditioner. 
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Methods 

 

!  Pre-processing data 

!  For K Means and PCA had to ignore certain features in order for them to work 

!  Ignored 1st and 2nd features of the data set 

!  Date and time 

!  As mentioned earlier, some dates contained missing values for the sub 

measurements. 

!  If there was data missing, was replaced by ‘?’ 

!  Need to remove the row altogether if a ‘?’ is present 

!  K-means 

!  PCA 



Results 

From Elbow Plot, k chosen was 

3 



Results 
 



Future work 

!  I plan to interpret the data in terms of day vs night 

!  Using class markers to plot data 

!  Want to divide up data into months 

!  Finding peak times in energy consumption 



Thank you !  

!  comments / questions / suggestions? 


