
CSC 334: TOPICS IN
COMPUTATIONAL BIOLOGY
“Algorithms for Genomic Data”

Fall 2015
Smith College
Instructor: Prof. Sara Sheehan

Outline: 9/18

• Velvet paper

Assembly vocabulary
• Long read: a fragment that has been “read” from a genomic

sequence (DNA for us), usually > 1000 bp

• Short read: same as a long read but usually < 1000 bp

• Paired-end read: both ends of a fragment are “read”, but the portion
between them is unknown

• bp: base pair

•  kb, Mb, Gb: kilo bases 103, mega bases 106, giga bases 109

Assembly vocabulary (cont)

• Coverage: total number of bases in all reads, divided by the
length of the genome (short reads: need higher coverage)

•  k-mer: a genomic “word” of length k

•  N50: for a set of contigs, N50 is the length such that at least half the
bases of the assembly are in a contig with length N50 or longer, and at
least half the bases are in a contig with length N50 or shorter

Velvet de Bruijn graph

In this study, we present a set of algorithms, collectively
named “Velvet,” that manipulates these de Bruijn graphs effi-
ciently to both eliminate errors and resolve repeats. These two
tasks are done separately: first, the error correction algorithm
merges sequences that belong together, then the repeat solver
separates paths sharing local overlaps. We have assessed Velvet
on both simulated and real data. Using only very short paired
simulated reads, Velvet is capable of assembling bacterial ge-
nomes, with N50 contig lengths of up to 50 kb, and simulations
on 5-Mb regions of large mammalian genomes, with contigs of
∼3 kb.

Results

The de Bruijn graph

Structure

In the de Bruijn graph, each node N represents a series of over-
lapping k-mers (cf. Fig. 1 for a small example). Adjacent k-mers
overlap by k ! 1 nucleotides. The marginal information con-
tained by a k-mer is its last nucleotide. The sequence of those
final nucleotides is called the sequence of the node, or s(N).

Each node N is attached to a twin node Ñ, which represents
the reverse series of reverse complement k-mers. This ensures that
overlaps between reads from opposite strands are taken into ac-
count. Note that the sequences attached to a node and its twin do
not need to be reverse complements of each other.

The union of a node N and its twin Ñ is called a “block.”
From now on, any change to a node is implicitly applied sym-
metrically to its twin. A block therefore has two distinguishable
sides, in analogy to the “k-mer edges” described in Pevzner et al.’s
2001 paper.

Nodes can be connected by a directed “arc.” In that case, the
last k-mer of an arc’s origin node overlaps with the first of its
destination node. Because of the symmetry of the blocks, if an arc

goes from node A to B, a symmetric arc goes from B̃ to Ã. Any
modification of one arc is implicitly applied symmetrically to its
paired arc.

On these nodes and arcs, reads are mapped as “paths” tra-
versing the graph. Extracting the nucleotide sequence from a
path is straightforward given the initial k-mer of the first node
and the sequences of all the nodes in the path.

Construction

The reads are first hashed according to a predefined k-mer length.
This variable k is limited on the upper side by the length of the
reads being hashed, to allow for a small amount of overlap, usu-
ally k = 21 for 25-bp reads. Smaller k-mers increase the connec-
tivity of the graph by simultaneously increasing the chance of
observing an overlap between two reads and the number of am-
biguous repeats in the graph. There is therefore a balance be-
tween sensitivity and specificity determined by k (cf. Methods).

For each k-mer observed in the set of reads, the hash table
records the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read. Each k-mer is
recorded simultaneously to its reverse complement. To ensure
that each k-mer cannot be its own reverse complement, k must be
odd. This first scan allows us to rewrite each read as a set of
original k-mers combined with overlaps with previously hashed
reads. We call this new representation of the read’s sequence the
“roadmap.”

A second database is created with the opposite information.
It records, for each read, which of its original k-mers are over-
lapped by subsequent reads. The ordered set of original k-mers of
that read is cut each time an overlap with another read begins or
ends. For each uninterrupted sequence of original k-mers, a node
is created.

Finally, reads are traced through the graph using the road-
maps. Knowing the correspondence between original k-mers and
the newly created nodes, Velvet proceeds from one node to the
next, creating a new directed arc or incrementing an existing one
as appropriate at each step.

Simplification

After constructing the graph, it is generally possible to simplify it
without any loss of information. Blocks are interrupted each time
a read starts or ends. This leads to the formation of “chains” of
blocks, or linear connected subgraphs. This fragmentation of the
graph costs memory space and lengthens calculation times.

These chains can be easily simplified. Whenever a node A
has only one outgoing arc that points to another node B that has
only one ingoing arc, the two nodes (and their twins) are merged.
Iteratively, chains of blocks are collapsed into single blocks.

The simplification of two nodes into one is analogous to the
conventional concatenation of two character strings, and also to
some string graph based methods (Myers 2005). This straightfor-
ward transformation involves transferring arc, read, and se-
quence information as appropriate.

Error removal

Errors are corrected after graph creation to allow for simulta-
neous operations over the whole set of reads. In our framework,
errors can be due to both the sequencing process or to the bio-
logical sample, for example, polymorphisms. Distinguishing
polymorphisms from errors is a post-assembly task. A naive ap-
proach to error removal would be to use the difference between

Figure 1. Schematic representation of our implementation of the de
Bruijn graph. Each node, represented by a single rectangle, represents a
series of overlapping k-mers (in this case, k = 5), listed directly above or
below. (Red) The last nucleotide of each k-mer. The sequence of those
final nucleotides, copied in large letters in the rectangle, is the sequence
of the node. The twin node, directly attached to the node, either below or
above, represents the reverse series of reverse complement k-mers. Arcs
are represented as arrows between nodes. The last k-mer of an arc’s origin
overlaps with the first of its destination. Each arc has a symmetric arc.
Note that the two nodes on the left could be merged into one without
loss of information, because they form a chain.

Zerbino and Birney

822 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 14, 2015 - Published by genome.cshlp.orgDownloaded from

Bubbles

Velvet Assembler, Wikipedia

sequencing error

Velvet: Tour Bus algorithm

the expected coverage of genuine sequences and that of random
errors. Therefore removing all the low coverage nodes (and their
corresponding arcs) would remove the errors. However, this relies
on the differences being due to genuine errors and not to bio-
logical variants present at a reasonable frequency in the sample,
and errors being randomly distributed in the reads.

Instead, Velvet focuses on topological features. Erroneous
data create three types of structures: “tips” due to errors at the
edges of reads, “bulges” due to internal read errors or to nearby
tips connecting, and erroneous connections due to cloning errors
or to distant merging tips. The three features are removed con-
secutively.

Removing tips

A “tip” is a chain of nodes that is disconnected on one end.
Removing these tips is a straightforward task. Discarding this
information results in only local effects, as no connectivity is
disrupted. Nonetheless, some restraint must be applied to the
process to avoid eroding genuine sequences that are merely in-
terrupted by a coverage gap. To deal with this issue, we define
two criteria: length and minority count.

A tip will only be removed if it is shorter than 2k. This
arbitrary cutoff length was chosen because it is greater than the
length in k-mers of an individual very short read. Erroneous con-
structs involving entire short reads are presumably extremely
rare. In the case of long reads, this cutoff is set to be the maxi-
mum length tip that can be created by two nearby mistakes. A tip
longer than 2k therefore represents either genuine sequence or
an accumulation of errors that is hard to distinguish from novel
sequence. In the latter case, clipping the read tips more strin-
gently might be necessary.

We define “minority count” as the property that, at the
node where the tip connects to the rest of the graph, the arc
leading to that tip has a multiplicity inferior to at least one of the
other arcs radiating out of that junction node. In other words,
starting from that node, going through the tip is an alternative to
a more common path.

This ensures that, at the local level, tips are removed in
increasing order of multiplicity. Velvet progressively uncovers
chains of high coverage nodes that are not destroyed by virtue of
the previous criteria, thus preserving the graph from complete
erosion.

Velvet iteratively removes tips from the graph under these
two criteria. When there are no more tips to remove, the graph is
simplified once again.

Removing bubbles with the Tour Bus algorithm

We consider two paths redundant if they start and end at the
same nodes (forming a “bubble”) and contain similar sequences.
Such bubbles can be created by errors or biological variants, such
as SNPs or cloning artifacts prior to sequencing. Erroneous
bubbles are removed by an algorithm called “Tour Bus.” The
criteria for deciding whether two paths justify simplification can
be complex, taking into account error models of the sequence or
(for the case of mixed haplotype samples) other features of the
sequence and graph, such as coverage. Currently, we apply
simple sequence identity and length thresholds.

Detection of redundant paths is done through a Dijkstra-like
breadth-first search. The algorithm starts from an arbitrary node
and progresses along the graph, visiting nodes in order of increas-
ing distance from the origin. In this application, the distance

between two consecutive nodes A and B is the length of s(B)
divided by the multiplicity of the arc leading from A to B. This ad
hoc metric gives priority to higher coverage, more reliable, paths.

Whenever the process encounters a previously visited node,
it backtracks from both the current node and the previously vis-
ited node, to find their closest common ancestor. From the two
retraced paths, the sequences are extracted and aligned. If judged
similar enough, they are merged. The path that reached the end
node first in the search, “shortest” according to the metric, is
used as the consensus path because of its higher coverage. The
metric implicitly imposes a majority vote in choosing the con-
sensus sequence. Figure 2 shows how the iteration proceeds on a
small example graph.

Merging two paths is a complex operation, as all the under-
lying graph structures must be remapped while maintaining their
connections with other nodes. The positioning of the different
elements is based on the sequence alignment of the paths. Al-
though straightforward on linear paths, that is, when no block is
visited more than once, this transformation is subtler in the pres-
ence of palindromes. Palindromes create “hairpin folds,” paths
that go through a block one way, then go through it again, in the
opposite direction. The need to preserve connectivity forbids
projecting hairpins onto linear paths.

To merge two paths, Tour Bus creates a chain of markers
along both of them, node by node. The paths are merged pro-

Figure 2. Example of Tour Bus error correction. (A) Original graph. (B)
The search starts from A and spreads toward the right. The progression of
the top path (through B! and C!) is stopped because D was previously
visited. The nucleotide sequences corresponding to the alternate paths
B!C! and BC are extracted from the graph, aligned, and compared. (C)
The two paths are judged similar, so the longer one, B!C!, is merged into
the shorter one, BC. The merging is directed by the alignment of the
consensus sequences, indicated in red lines in B. Note that node X, which
was connected to node B!, is now connected to node B. The search
progresses, and the bottom path (through C! and D!) arrives second in E.
Once again, the corresponding paths, C!D! and CD are compared. (D)
CD and C!D! are judged similar enough. The longer path is merged into
the shorter one.

Short read de novo assembly using de Bruijn graphs

Genome Research 823
www.genome.org

 Cold Spring Harbor Laboratory Press on September 14, 2015 - Published by genome.cshlp.orgDownloaded from

Species tested: model organisms

• Escherichia coli: E. coli (bacteria)

• Saccharomyces cerevisiae: yeast

• Caenorhabditis elegans: C. elegans (worm)

• Homo sapiens: Us :)

Velvet: N50 vs. coverage

gressively from one end to the next. At each step, the first un-
mapped minority node is compared to the corresponding major-
ity consensus node, using the local sequence alignment pro-
duced previously. All the information attached to that node,
including coverage, sequence identifiers, and arcs, is then
mapped accordingly onto the majority node. The presence of
markers allows Tour Bus to dynamically modify the marked path
as it corrects the graph. This can be especially useful when a path
goes through node A, then later through its twin node. After
remapping A, Velvet remaps Ã, and diverts the path markers
accordingly.

Removing erroneous connections

Erroneous connections are removed after Tour Bus. These un-
wanted connections do not create any recognizable loop or struc-
ture, so they cannot be readily identified from the topology of
the graph as with tips and bubbles. Also, they cannot be associ-
ated directly to a corresponding correct path. Therefore, Velvet
removes them with a basic coverage cutoff. Currently this cutoff
is set by the user, based on plots of node coverage after the re-
moval of bubbles.

It is important to stress that this simple node removal, be-
cause it is done after Tour Bus, does not contradict the cautious
approach in the design of that algorithm. Indeed, the purpose of
Tour Bus is to remove errors without destroying unique regions
with low coverage. Once this algorithm has run, most unique
regions are simplified into long straight nodes, where, by virtue
of the law of large numbers, the average coverage is close to the
expected value. Genuine short nodes
that cannot be simplified correspond to
low-complexity sequences that are gen-
erally present multiple times in the ge-
nome. Their overall coverage is therefore
proportionally higher. This means that
with a high probability, any low-
coverage node left after Tour Bus is a chi-
meric connection, due to spurious over-
laps created by experimental errors.

Testing error removal on simulated
data

We simulated reads from four different
reference genomes: Escherichia coli, Sac-
charomyces cerevisiae, Caenorhabditis el-
egans, and Homo sapiens. In the last three
species, we chose 5-Mb regions of each
genome, corresponding to the approxi-
mate amount of DNA that can be se-
quenced with a 50! coverage depth by a
single Solexa lane. Five megabytes is
therefore the largest amount of continu-
ous data that could be present on cur-
rent machine formats in a single lane;
currently there are significant laboratory
challenges to generate normalized clone
pools for a complete 5-Mb region, but
smaller units of genome, such as BACs,
(potentially using indexing technology
to track each clone) will present an easier
assembly problem. Reads 35 bp long
were randomly generated at different

coverage values, from 5! to 50!, then hashed by 21-mer words.
We only considered substitution errors as these are reported as
the most common class of error for current short read sequencing
technologies. The evolution of the N50, or median length-
weighted contig length, against coverage is displayed in Figure 3.

In the first test, the reads do not contain errors. Initially
coverage increases exponentially, as predicted by the Lander-
Waterman statistic (Lander and Waterman 1988). Then, when
coverage is sufficient, the N50 abruptly stops increasing, as it is
limited by the natural repetition of the reference genome. This
barrier has a different level depending on the reference genome.
Obviously, the more repetitive and complex the genome is, the
lower the maximum N50.

The second test is identical to the first, with the introduc-
tion of errors at a 1% rate. The results are consistent with the first
test, except that the maximum N50 is lower than with error-free
reads. In fact, as coverage rises to 50!, the N50 decreases slightly,
owing to the adjunction of errors without the closing of any
coverage gap.

Finally, the third test is identical to the second, but with
reads (with 1% error) generated from two copies of the reference
genome: the original one and one with SNPs randomly added at
a rate of 1/500 bp. Velvet is not significantly affected by these
variations.

Testing error removal on experimental data

A 173,428-bp human BAC was sequenced using Solexa sequenc-
ing machines, with an average coverage of 970!. The BAC was

Figure 3. Simulations of Tour Bus. The genome of E. coli and 5-Mb samples of DNA from three other
species (S. cerevisiae, C. elegans, and H. sapiens, respectively) were used to generate 35-bp read sets of
varying read depths (X-axis of each plot). We measured the contig length N50 (Y-axis, log scale) after
tip-clipping (black curve) then after the subsequent bubble smoothing (red curve). In the first column
are the results for perfect, error-free reads. In the second column, we inserted errors in the reads at a
rate of 1%. In the third column, we generated a slightly variant genome from the original by inserting
random SNPs at a rate of 1 in 500. The reads were then generated with errors from both variants, thus
simulating a diploid assembly.

Zerbino and Birney

824 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 14, 2015 - Published by genome.cshlp.orgDownloaded from

Velvet: Breadcrumb algorithm

random 35-bp reads with 50! coverage of the selected 5-Mb
samples. Our simulated read pair set assumes complete coverage
in read pairs with no mispairing rate and a restricted length dis-
tribution, which is an admittedly ideal scenario, although the
algorithm does not explicitly utilize the coverage or length dis-
tribution of read pairs.

Figure 6 shows the evolution of N50 against insert length.
We see that whereas insert lengths must be long enough to step
over obstacles in the graph, if they are too long, scaffolding the
contigs becomes problematic. Mis-assemblies were infrequent,
<0.5% for the most challenging case, i.e., the assembly of human
reads with errors and SNPs.

The errors generated by Velvet are concentrated in the re-
peat regions reconstructed by Breadcrumb. This is because in its
current implementation, Tour Bus simplifies small local variation
and errors alike, creating consensus sequences for repeated re-
gions. There is therefore a discrepancy between the reads being
used to resolve a repeat and the sequence of the nodes they are
mapped onto. This effect could be corrected by post-analysis of
the contigs and the reads they contain, or by training Tour Bus to
distinguish errors from biological variation.

Upon visual inspection of the actual contigs, we found that
the N50 in human is mainly limited by Alu repeats and other
common repeated structures. In other words, Breadcrumb re-
solves numerous short repeats and is blocked by the sparser and
more complex ones. These structures are present in large quan-
tities, sufficiently similar to present numerous overlaps, yet suf-
ficiently polymorphic to resist simplification by Tour Bus. There-
fore, they produced many long ambiguous loops that could not
be resolved by Breadcrumb.

We attempted to use paired reads to help scaffold the con-
tigs together, but rather than generating traditional super contigs
(which are separated by a gap of unknown sequence), in this case
we have complete, but unresolved, sequence between the two
contigs. We describe these super contigs as “Sequence Connected
Super Contigs” (SCSCs). This unresolved sequence could be used
to classify the repeat class of the intervening sequence or be used
in alignment of a novel sequence to the region, allowing one to
definitively exclude a novel sequence from a region, despite not
resolving the complete sequence of the region. The results of the
previous test with the addition of this rule are also shown in
Figure 6. The increase in N50 obtained by reporting SCSCs is
particularly marked in human and E. coli, where the N50 is raised
from 3 kb to 6 kb (for human) and from 50 kb to 100 kb in E. coli.

This is indicative of the different repeat structures with dispersed
repeats containing ambiguous central regions present in both of
these genomes. In contrast, the S. cerevisiae or C. elegans repeat
structure is either resolvable or not.

Complexity and scaling issues

Velvet has four stages: hashing the reads into k-mers, construct-
ing the graph, correcting errors, and resolving repeats. Each stage
has different computational requirements.

The main bottleneck, in terms of time and memory, is the
graph construction. The initial graph of the Streptococcus reads
needs 2.0 Gb of RAM. The scale of the problem will eventually
require memory persistent data structures for whole-genome as-
semblies. Admittedly, access times would be greater, but the
amount of storable data would be virtually unlimited.

The time complexity of Tour Bus depends primarily on the
number N of nodes in the graph, which itself depends on the
read coverage, error rate, and number of repeats. Idury and Wa-
terman (1995) estimated N but neglected to consider repeats. The
search itself is based on the Dijkstra algorithm, which has a time
complexity of O(N logN) when implemented with a Fibonacci
heap (Gross and Yellen 2004). The cost of individual path com-
parisons and the corresponding graph modifications can be lim-
ited by a length cutoff. In the latest implementation, correction
of the human BAC reads took 18 sec on a single processor, and
tests on large data sets have shown behavior close to the theo-
retical complexity.

The time cost of the Breadcrumb algorithm is also depen-
dent on the number of nodes, as a test is run for every long node.
The time for each test is proportional to the number of nodes
spanned by a read. This depends on the average length of inserts
and that of nodes. The latest implementation of the algorithm
run on a whole-genome shotgun data set of E. coli data took 1.5
sec.

Comparison to other very short read assemblers

We compared Velvet to recently published short read assemblers
SSAKE (Warren et al. 2007) and VCAKE (Jeck et al. 2007; Table 3).
These differ from each other mainly in the way they deal with
errors. SSAKE and VCAKE implicitly explore a de Bruijn graph
step by step by searching for reads in a hash table. Whereas Vel-

Figure 4. Effect of coverage on contig length with experimental Strep-
tococcus data.

Figure 5. Breadcrumb algorithm. Two long contigs produced after er-
ror correction, A and B, are joined by several paired reads (red and blue
arcs). The path between the two can be broken up because of a repeat
internal to the connecting sequence, because of an overlap with a distinct
part of the genome, or because of some unresolved errors. The small
square nodes represent either nodes of the path between A and B, or
other nodes of the graph connected to the former. Finding the exact path
in the graph from A to B is not straightforward because of all the alternate
paths that need to be explored. However, if we mark all the nodes that
are paired up to either A or B (with a blue circle), we can define a
subgraph much simpler to explore. Ideally, only a linear path connects
both nodes.

Zerbino and Birney

826 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 14, 2015 - Published by genome.cshlp.orgDownloaded from

Velvet: comparison with other assemblers

vet uses slightly more memory, it is significantly faster and pro-
duces larger contigs, without mis-assembly. Furthermore, it cov-
ers a large area of the genome with high precision.

We also tried using SHARCGS (Dohm et al. 2007) and
EULER (Pevzner et al. 2001) but were not able to make these
programs work with our data sets. This is probably due to differ-
ences in the expected input, particularly in terms of coverage
depth and read length.

Discussion
We have developed Velvet, a novel set of de Bruijn graph-based
sequence assembly methods for very short reads that can both
remove errors and, in the presence of read pair information, re-
solve a large number of repeats. With unpaired reads, the assem-
bly is broken when there is a repeat longer than the k-mer length.
With the addition of short reads in read pair format, many of
these repeats can be resolved, leading to assemblies similar to
draft status in bacteria and reasonably long (∼5 kb) SCSCs in
eukaryotic genomes.

For the latter genomes, the short read
contigs will probably have to be combined
with long reads or other sequencing strate-
gies such as BAC or fosmid pooling. Simu-
lations of Breadcrumb produced virtually
identical N50 lengths on both a continuous
5-Mb region and a discontinuous 5-Mb re-
gion made up of random 150-kb BACs, with

twofold variation in BAC concentration
(data not shown). This approach would
then require merging local assemblies.

Sequence connected supercontigs
have considerably more information
than gapped supercontigs, in that the se-
quence content separating the definitive
contigs is an unresolved graph. One can
easily imagine methods that can exclude
the presence of a novel sequence in the
SCSC completely by considering the
potential paths in the unresolved se-
quence regions, in contrast to tradi-
tional supercontigs, where one can
never make such a claim. In addition,
the unresolved regions will often be dis-
persed repeats, and as such the classifi-
cation of such regions as repeats is more
important than their sequence content
for many applications.

It is important to emphasize that
assembly is not a solved problem, in par-
ticular with very short reads, and there
will continue to be considerable algo-
rithmic improvements. Velvet can al-
ready convert high-coverage very short
reads into reasonably sized contigs with
no additional information. With addi-
tional paired read information to resolve
small repeats, almost complete genomes
can be assembled. We believe the Velvet
framework will provide a rich set of dif-
ferent algorithmic options tailored to
different tasks and thus provide a plat-

form for cheap de novo sequence assemblies, eventually for all
genomes.

Methods
Velvet parameters
Velvet was implemented in C and tested on a 64-bit Linux ma-
chine.

The results of Velvet are very sensitive to the parameter k as
mentioned previously. The optimum depends on the genome,
the coverage, the quality, and the length of the reads. One ap-
proach consists in testing several alternatives in parallel and pick-
ing the best.

Another method consists in estimating the expected num-
ber X of times a unique k-mer in a genome of length G is observed
in a set of n reads of length l. We can link this number to the
traditional value of coverage, noted C, with the relations:

E!X" =
n!l − k + 1"

G − k + 1
≈

n
G !l − k + 1" = C

l − k + 1
l

Figure 6. Breadcrumb performance on simulated data sets. As in Figure 3, we sampled 5-Mb DNA
sequences from four different species (E. coli, S. cerevisiae, C. elegans, and H. sapiens, respectively) and
generated 50! read sets. The horizontal lines represent the N50 reached at the end of Tour Bus (see
Fig. 3) (broken black line) and after applying a 4! coverage cutoff (broken red line). Note how the
difference in N50 between the graph of perfect reads and that of erroneous reads is significantly
reduced by this last cutoff. (Black curves) The results after the basic Breadcrumb algorithm; (red curves)
the results after super-contigging.

Table 3. Comparison of short read assemblers on experimental Streptococcus suis Solexa
reads

Assembler
No. of
contigs N50

Average
error rate Memory Time Seq. Cov.

Velvet 0.3 470 8661 bp 0.02% 2.0G 2 min 57 sec 97%
SSAKE 2.0 265 1727 bp 0.20% 1.7G 1 h 47 min 16%
VCAKE 1.0 7675 1137 bp 0.64% 1.8G 4 h 25 min 134%

Short read de novo assembly using de Bruijn graphs

Genome Research 827
www.genome.org

 Cold Spring Harbor Laboratory Press on September 14, 2015 - Published by genome.cshlp.orgDownloaded from

