
CSC 240
Computer Graphics

Fall 2015
Smith College

Outline: 9/16

�  Polygons

�  Flood fill algorithm

�  Better fill algorithm

White background slides from Eitan Mendelowitz

Polygon

�  Chain of line segments that form a closed loop

Complex Polygon

• self intersections

Simple Polygon

• no self intersections

• and no overlapping
points

Complex Polygon

• self intersections

Convex Polygon

• Every internal angle is
less than or equal to 180
degrees.

• (all vertices point
outward)

• Every line segment
between two vertices
remains inside or on the
boundary of the
polygon.

• (no dents)

Concave Polygon
• There exist an internal

angle is greater than 180
degrees.

• (at least one vertex
points inward)

• There exists at least one
line segment between
two vertices that exits
the boundary of the
polygon.

• There is a “dent” or
“cave”

More polygons

"Polygon types" by Salix alba, Wikipedia

Qualities of a good
Polygon Algorithm

• good line

• approximates line

• constant weight

• fast

• No cracks between adjacent polygons

Flood Fill

�  Pick a pixel inside the fill area

�  Fill the pixel

�  Repeat with neighboring non-edge pixels

Recursion!

Lab 3

Flood Fill: example code

Flood Fill result

Better Fill Algorithm

�  Triangle sweep

Polygons

• How do we know if we are inside?

Convex Polygons

• Triangle Method

 3

Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
 Compute which pixels are inside using horizontal spans

 Process horizontal spans in scan-line order

• Take advantage of edge linearity
 Use edge slopes to update coordinates incrementally

dx
dy

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
for each edge pair {

initialize xL, xR;
compute dxL/dyL and dxR/dyR;
for each scanline at y
for (int x = xL; x <= xR; x++)

SetPixel(x, y, rgba);
xL += dxL/dyL;
xR += dxR/dyR;

}
}

xL xR

dxL

dyL

dxR

dyR

Bresenham’s algorithm
works the same way,
but uses only integer
operations!

Polygon Scan Conversion

• Fill pixels inside a polygon
 Triangle

 Quadrilateral

 Convex

 Star-shaped

 Concave

 Self-intersecting

 Holes

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

• Need better test for points inside polygon
 Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4

L5

L1

L2

L3A

L4

L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
 Any ray from P to infinity crosses odd number of edges

Concave

 3

Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
 Compute which pixels are inside using horizontal spans

 Process horizontal spans in scan-line order

• Take advantage of edge linearity
 Use edge slopes to update coordinates incrementally

dx
dy

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
for each edge pair {

initialize xL, xR;
compute dxL/dyL and dxR/dyR;
for each scanline at y
for (int x = xL; x <= xR; x++)

SetPixel(x, y, rgba);
xL += dxL/dyL;
xR += dxR/dyR;

}
}

xL xR

dxL

dyL

dxR

dyR

Bresenham’s algorithm
works the same way,
but uses only integer
operations!

Polygon Scan Conversion

• Fill pixels inside a polygon
 Triangle

 Quadrilateral

 Convex

 Star-shaped

 Concave

 Self-intersecting

 Holes

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

• Need better test for points inside polygon
 Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4

L5

L1

L2

L3A

L4

L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
 Any ray from P to infinity crosses odd number of edges

Polygon Sweep Algorithm

 4

Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans,
and determine insideness with odd parity rule
 Takes advantage of scanline coherence

xL xR

Triangle Polygon

Polygon Sweep-Line Algorithm

void ScanPolygon(Triangle T, Color rgba){
sort edges by maxy
make empty “active edge list”
for each scanline (top-to-bottom) {

insert/remove edges from “active edge list”
update x coordinate of every active edge

 sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels(xi, xi+1, y, rgba);
}

}

Hardware Scan Conversion

• Convert everything into triangles
 Scan convert the triangles

Hardware Antialiasing

• Supersample pixels
 Multiple samples per pixel

 Average subpixel intensities (box filter)

 Trades intensity resolution for spatial resolution

P
1

P
2

P
3

Overview

• Scan conversion
 Figure out which pixels to fill

• Shading
 Determine a color for each filled pixel

Shading

• How do we choose a color for each filled pixel?
 Each illumination calculation for a ray from the eyepoint

through the view plane provides a radiance sample

» How do we choose where to place samples?

» How do we filter samples to reconstruct image?

Angel Figure 6.34

Emphasis on methods that can

be implemented in hardware

