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Abstract

Loop nest transformation has been used successfully to tune dense numerical codes for high perfor-

mance on single- and multi-core shared-memory systems, but has not been widely applied to cluster

computing. We have explored the use of these tools to produce the extremely high degree of memory

locality needed to achieve high performance on a cluster with Intel’s Cluster OpenMP software. Our

experiments show high performance across our dedicated homogeneous 56-core/14-node research

cluster with gigabit Ethernet. With proper tuning, performance drops by less than a factor of two,

and sometimes only a few percent, when the network speed is reduced to 100Mb/sec. These results

indicate that properly chosen compile-time optimizations can be used for cluster computing, and illus-

trate the importance of scalable locality, which may be of interest to programmers developing cluster

codes manually.

∗. This work was supported by NSF grant CCF-0943455 and funds from Haverford College and a private donor.
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1 Introduction

Loop nest transformation has been used successfully to tune dense numerical codes for high performance
on shared-memory systems with both single and multiple processors or cores. This set of techniques has
not been widely applied to cluster computing, perhaps because the machine parameters are very different
from those used to develop and test the compiler algorithms.

Loop tiling [1] can be used to increase the execution speed of a multi-dimensional loop nest such as the
first i/j nest in Figure 1. It was originally developed for uniprocessors, to increase cache hit rates by
improving locality of reference. To illustrate this transformation with a simple example, consider what
happens if the iterations of this loop are executed in the usual order for a large data set. In this case, ele-
ment A[1][1], which was defined when i = 1 and j = 1, may be gone from cache before the execution of
iteration (i = 2, j = 1), when it is needed to play the role of A[i-1][j]. Thus, an execution of the loop
body may need to read three values from main memory (A[i][j] and A[i][j-1] will likely be in cache)
to execute its six floating-point operations, and performance may be limited by memory bandwidth rather
than computation speed on modern CPUs.

Cache use is improved by executing groups of iterations in “tiles”, for example as 10 by 10 blocks with
all iterations where (1 6 i 6 10, 1 6 j 6 10) occurring before those where (1 6 i 6 10, 11 6 j 6 20). This
limits the number of other values to be retrieved before a given value is reused (in this example, to about
20 values from A) regardless of the problem size. This increase in the locality of the reference that re-uses
an array element means values can be retrieved from cache rather than main memory even for a large
problem. In many cases, an iteration of this loop will need to retrieve only one element of A for each six-
operation execution of the loop body. This may let the memory system keep the CPU busy on a system
in which the rate of floating point operations does not exceed six times the speed at which floating point
values can be delivered from cache, i.e., with a compute:bandwidth ratio (called machine balance[2][3]) of
no more than 6:1.

Tiling also provides a convenient way to partition data for concurrent execution. Array elements near
the edge of a tile may require communication, but those near the center of a tile typically will not. By
increasing the tile size, we can increase the ratio of computation to communication.

Traditional algorithms for loop tiling can handle only perfectly nested loops, and thus cannot be used
for the t/i nest in Figure 2. More recent techniques[4][5][6][7] based on the polyhedral model relax this
restriction and allow tiling of Figure 2, or the entire three-dimensional space of iterations of Figure 1.
This provides a higher degree of locality by taking advantage of re-use of array elements between the two
different i/j nests and across different time steps, thus improving performance on high-performance hard-
ware [5]. For a review of these techniques or the polyhedral approach to compilation, see the cited papers
or the sources listed in the Wikipedia entries for the polyhedral model[8] and associated libraries[9].

In prior work[10][6], Wonnacott argued that tiling a time-step loop differs fundamentally from most
compile-time transformations (including tiling of spatial loops) in that it can often produce scalable

locality , i.e. the locality (or ability of the system to re-use an element while still in cache) can be scaled to
match machine balance. Tiling the i/j nest of Figure 1 can not produce an operation to new-value-refer-
ence ratio (called compute balance in [10]) above 6:1 for any tile size. However, when tiling of the full
t/i/j loop nest, increases the tile size in the time dimension can produce we can arbitrarily increase the
compute balance within a tile, and thus the potential for re-use. This tiling of time step loops (often
called time tiling or time skewing) also makes it possible to improve the multiprocessor computation:com-
munication ratio without requiring impractical data set sizes, though Wonnacott did not experiment with
this in [10] or [6].

Factors such as cache size limitation or cache interference may prevent increased compute balance from
yeilding increased locality. Wonnacott gave formulae for cache size requirement and discusses the preven-
tion of iterference via storage mappings together with the iteration-space mappings used to reorder itera-
tions, Wonnacott provided empirical evidence for this claim on uniprocessor systems by transforming sev-
eral benchmark codes to produce in-core processing speeds for out-of-core data sets (in one case, running
a data set residing in virtual memory faster than the untransformed code could execute a data set from
level 2 cache, hundreds of times faster than the original code on the big data set). Wonnacott also pre-
dicted[6] that the tiled code could be used to provide good parallel performance on multiprocessors with
relatively slow interconnects, but was unable to test this claim.
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for (t = 0; t < T; t++) {

for (i = 1; i < N-1; i++)

for (j = 1; j < M-1; j++)

new[i][j] = (A[i][j-1]+

A[i-1][j]+A[i][j]*4+A[i+1][j]+

A[i][j+1]) * 0.125;

for (i = 1; i < N-1; i++)

for (j = 1; j < M-1; j++)

A[i][j] = new[i][j];

}

Figure 1. A Two-Dimensional Jacobi Stencil

for (t = 0; t < T; t++) {

for (i = 1; i < N-1; i++)

new[i]=(A[i-1]+2*A[i]+A[i+1])*0.25;

for (i = 1; i < N-1; i++)

A[i] = new[i];

}

Figure 2. A One-Dimensional Jacobi Stencil

Below, we report on our experiments to exploit scalable locality to tune the benchmarks of [10] for
cluster computers and describe remaining challenges. We have explored the use of the Pluto automatic
parallelizer[11] and the AlphaZ program transformation system[12] to perform the time tiling transforma-
tion on these benchmarks. These tools can each produce OpenMP codes, which we executed on a 56-
core/14-node homogeneous dedicated cluster using Intel’s Cluster OpenMP [13].

2 Experimental Framework

The PLUTO automatic parallelizer[11] has shown impressive results in modifying C source for parallelism
in dense matrix computations [7][14][15]. Even though these kinds of computations are infrequently used
in general purpose computing, the performance gains in the scientific computing realm are notable enough
to drive continued research. Pluto accepts C source code with #pragma directives indicating which loop
nests are to be tiled, and then performs tiling. Tile sizes can be selected manually with a configuration
file, and Pluto can be set to produce uniprocessor C code or C code annotated with directives for
OpenMP loop parallelization.

The AlphaZ system[12] is a tool that generates code for mathematical algorithms using the polyhedral
model. AlphaZ generates this code not from existing C code, but rather from a series of equations written
in a simple pure-functional programming language specially designed for the system, called Alphabets.
For example, Figure 3 shows one way to express the one-dimensional stencil as AlphaZ equations. In addi-
tion to the equational Alphabets file, AlphaZ also takes a schedule as input; this schedule file contains
specifications on how AlphaZ should handle statement ordering and memory mapping, as well as giving
the option of enabling automatic tiling (or parallelization) of the code. Thus, the programmer can sepa-
rately describe both the result to be computed and the manner in which the computation is being carried
out. Performance tuning can be done with a great deal of manual control and with confidence that the
correctness of the code will not be perturbed. AlphaZ, like Pluto, generates sequential or OpenMP-anno-
tated code.

Experimental Framework 3



affine oneD {T,N | T>0 && N>4}

given

double Initial {i | 0<=i<=N-1};

returns

double Final {i | 0<=i<=N-1};

using

double A {t,i | 0<=t<=T && 0<=i<=N-1};

through

A[t,i] = case

{| t==0} : Initial[i];

{| t>0 && i==0} : (A[t-1,i]);

{| t>0 && i==N-1} : (A[t-1,i]);

{| t>0 && 0<i<N-1} :

( A[t-1,i-1] +

2*A[t-1,i] +

A[t-1,i+1] ) / 4.0;

esac;

Final[i] = A[T,i];

.

Figure 3. AlphaZ Equations for 1-d Stencil

Standard OpenMP programs are only executable on traditional shared memory systems. In order to
run OpenMP code on a cluster of machines connected by Ethernet, we must use other tools. To run code
on our cluster, we turn to a framework developed by Intel named Cluster OpenMP (hereafter ClOMP).
According to its documentation[13], ClOMP “is based on a licensed derivative of the TreadMarks software
from Rice University.” This framework allows our OpenMP code to execute on all of our machines even
though they do not share a single address space and are connected by a commodity network interconnect.

ClOMP requires a number of configuration files in which many parameters can be set. The list of
nodes in the cluster is provided in one file, and another describes the number of processes to be started (-
-processes=...), the number of independent threads within each process (--process_threads=...), and
various other parameters. Except where stated otherwise, we used one process per node and four threads
per process, with the parameters --sharable_heap=100M and --divert-twins (the latter was suggested
by a message from the ClOMP system but we have not been able to find documentation for it).

OpenMP and ClOMP are both provided by the C compiler we use, Intel’s icc version 10.1. We ran
icc with optimization level -O3, and used the -cluster-openmp option to process OpenMP programs for
execution on the cluster or the -openmp option for single-node OpenMP results. For the two-dimensional
stencil, we used the option -mcmodel=medium to allow the use of our very large data set.

Because ClOMP requires a Linux kernel older than or equal to 2.6.24 and a glibc standard library
older than or equal to 2.3.6, we installed an antiquated version 4.0 of Debian GNU/Linux on our
machines, and purchased network cards compatible with this release.

Our codes were tested on a homogeneous cluster of 14 quad-core computers, which were dedicated to
this research when experiments were being run, but available for teaching at other times. Each of the
nodes is powered by an Intel Core i7 860 microprocessor running at 2.8 GHz, with 4 GB of DDR3
memory. The processors are capable of hyper-threading, i.e., running multiple threads on one physical
core, but that was disabled for our benchmarks to reduce the number of issues complicating our analysis.

The machines are connected via Ethernet switches administered by Haverford College. Early results
were performed with ten nodes on a 10/100 switch and four on a gigabit switch, but later all were moved
to the gigabit switch. Nodes connected at the gigabit switch could be configured to communicate at
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100Mb/second with the ethtool command; a few quick experiments with copying large files over NFS
confirmed that the network bandwidth had decreased as expected.

3 Experiments to be Run

We chose to experiment with two simple Jacobi stencil computations above, which have frequently been
used to illustrate the benefits of time tiling on uniprocessors[5][10][7], and with a more significant kernel: a
variant of the Tomcatv benchmark of SPEC95 with the early exit from the loop removed (to make it fit
more easily into the polyhedral model) and with a much larger data set and number of time steps (to
make it an appropriate test for a cluster of modern systems). The former were chosen to illustrate poten-
tial benefits, as they are well within the abilities of the Pluto and AlphaZ systems. The latter was used in
[10] and was chosen to present a challenge to these tools due to the greater complexity of the code while
remaining within the polyhedral model: the outer time-step loop includes a sequence of seven one- and
two-dimensional loop nests containing a total of 30 computation statements with a complex dataflow pat-
tern both within and across time steps.

We measured total run-time of the loop nests shown in Figures 1 and 2 via the linux gettimeofday

function; our “start time” was marked after a non-parallel initialization of values for array A, and our “end
time” was marked by exit from the computation loops.

Data set size was set to N=8000000 for the one-dimensional stencil, and to N=M=15500 for the two-
dimensional stencil. The number of time steps was scaled up with the total number of cores, with 575000
time steps per quad-core node (producing a total of about 8000000 for the full cluster) for the one-dimen-
sional stencil and 6250 per node for the two-dimensional stencil. These settings produce total run times
between one and three kiloseconds for most of our experiments, enough to amortize the start-up costs and
give an idea of the steady-state processing speed for a large problem.

Multi-node runs without Pluto were so much slower that we reduced the number of time steps to 25
for most runs (and conducted a few longer runs to confirm our expectation that this would give processing
rates consistent with those for more time steps, due to the the lack of inter-time-step optimization).

Tile sizes were selected by an empirical search conducted by the undergraduate members of the team.
We are currently investigating the question of whether various tile-size-selection heuristics are applicable
to our context, and if so how accurate they are. For the one-dimensional stencil, we chose tile size
1250x1250; for the two-dimensional stencil we employed a two-level tiling, with the innermost tile size set
to 8 iterations of the j loop, 64 of the i loop, and 1 of the t loop (with a total data footprint that fits in
each core’s L1 cache), and the level two tiles comprised of 16x2x128 level-one tiles, unless otherwise noted.

For our baseline of comparison on our speed-up graphs, we chose the processing speed of a single quad-
core node using ClOMP. This was generally very close to the quad-core speed using standard OpenMP,
though in all cases the quad-core node ran at well under four times the single-core speed (see Table 1).

OMP ClOMP
Problem 1-core 4-core 4-core

1-d w/o Pluto 1.8 2.5 2.5
2-d w/o Pluto 1.3 2.1 2.0

1-d with Pluto 4.5 14.8 12.8
2-d with Pluto 1.8∗ 5.6 5.5

Table 1. Single-Node Speeds (in GFLOPS)

Note that the 1-core speed shown in Table 1 for the two-dimensional stencil processed by Pluto could
probably be improved significantly by selecting tile size parameters for single-core performance; the speeds
shown in the table all use the tile sizes given in Section 2. We believe the 1-core speed for the one-dimen-
sional stencil is close to the maximum possible speed for any tile size[16]. We are currently investigating
the limits to the quad-core speedup with time-tiled code; our current hypothesis is that in may result
from the benefits of “Intel Turbo Boost” technology for the single-core run.
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4 Results using Pluto

Pluto was able to successfully transform both Jacobi stencils, and the transformed code dramatically out-
performed the result of icc without Pluto on both single-core, single-node, and cluster runs.

4.1 One-Dimensional Stencil

Figure 4 shows total compute speed for the one-dimensional stencil. Sets of dots indicate experimental
results, and solid lines indicate a linear speed up of single quad-core node (i.e., if k nodes ran k times
faster than one node executing the parallel code with ClOMP). The upper line and three sets of dots
show the performance of time-tiled codes produced by Pluto, with the different dots corresponding to dif-
ferent network speeds.

The lower line and two sets of dots show results without time tiling, in which each of the i loops
marked for parallel execution with the directive #pragma omp parallel for shared(t) private(i). These codes
ran so slowly that we had to reduce the number of time steps to 25. (A few experiments with slightly
larger sizes confirmed our expectation that increasing time steps would not help this code, as each time
step simply re-executes the same slow computation, without any advantage of inter-time-step locality).

The difference between the upper and lower lines shows the importance of time-tiling on a single node.
Even on a single core, time tiling can produce significant speedups for large data sets due to improved
memory locality[5][10].

The distance between each set of dots and the corresponding linear speedup shows the impact of inter-
node communication. The time-tiled codes stay close to the (much higher) linear speedup line across a
much wider range of cluster sizes, demonstrating that time tiling not only improves single node perfor-
mance, but also helps hide the enormous communication cost between nodes: with gigabit Ethernet, the
performance of the non-time-tiled code drop significantly away from linear speed-up by 20 total cores, but
the time-tiled code retains a very high percentage across the entire cluster size, producing 163 GFLOPS,
over 90% of linear speed up (178 GFLOPS) for 56 cores.
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With 100Mb ethernet, the time tiled code gives significant speed up out to 32 cores, while the perfor-
mance of the non-time-tiled code quickly falls below single-node performance and drops toward zero as
communication costs outweigh computation (by 24 cores, the total processing speed delivered by the
cluster is down below 50 MFLOPS). Above 32 nodes, time tiled performance becomes more sensitive to
details of tile size and ClOMP configuration; the “orig” data correspond to the original tiling, used in our
experiments on the gigabit Ethernet experiments; the “alt.” data correspond to the alternate configuration
used by Douglas for a slightly different formulation of the one-dimensional Jacobi stencil in [16].

In Section 6, we discuss possible causes of, and remedies for, the lack of performance increase for time-
tiled code on large clusters.

4.2 Two-Dimensional Stencil

Figure 5 shows corresponding results for the two-dimensional stencil. To generate non-time-tiled results
here, both sets of i loops are once again marked for parallel execution, with the directive #pragma omp

parallel for shared(t) private(i, j).
For the two-dimensional stencil, classic tiling of each perfectly nested i/j loop pair can produce signif-

icant performance improvements over on tiled code, and the importance of time tiling on a single node is
reduced. However, the tiling of spatial loops cannot be scaled up with any problem size parameter, and
thus it cannot equal the time-tiled performance. Furthermore, performance suffers dramatically when the
tiles are distributed around the cluster. The time-tiled code does not stay consistently close to the linear
speed up line, even with gigabit ethernet, though it repeatedly approaches this line (jumping back to 87%
at 24 cores after the fall to 73% at 20, and back to 92% at 44 cores after falling to 55% at 40). The causes
of these drops are discussed in Section 6.

Note that the time-tiled code not only beats the non-time-tiled code in terms of raw performance, it
also holds on to a larger fraction of linear speedup over a larger fraction of the cluster. Even with gigabit
Ethernet, performance of the non-time-tiled code is below 50% of linear at 28 cores. The performance of
the time-tiled code suffers less from the drop in network speed, holding on to 57% of its gigabit Ethernet
performance, or 42% of linear speed-up, on the full 56-core cluster. At a mere 24 cores, the 100Mb run of
the non-time tiled code retains only 13% linear speedup of its (lower) single-node performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60

T
ot

al
 S

pe
ed

 (
G

F
LO

P
S

)

Total Number of Cores

linear, w/ TT
1000Mb w/ TT
 100Mb w/ TT
linear, no TT

1000Mb no TT
 100Mb no TT

Figure 5. Two-Dimensional Stencil Total Speed

Results using Pluto 7



4.3 Simplified Tomcatv

We were not able to get Pluto to transform this benchmark due to the compiler failing during the trans-
formation, with the most recent release we have (PLUTO 0.7.0-13-g25752c5) causing glibc to dectect
a “double free or corruption (out)”. We have contacted the developers, and hope to succeed with this code
by “cleaning up” the program produced by f2c.

5 Results using AlphaZ

Our experiments with the AlphaZ system produced performance of about
1

2
to

3

4
of Pluto’s codes for the

one-dimensional stencil. Unfortunately, AlphaZ does not currently support two-level tiling, so it cannot
express the transformation we wish to apply for the two-dimensional stencil, and we performed only lim-
ited experiments with this benchmark. On the other hand, AlphaZ was able to compile our simplified
Tomcatv benchmark, though we have not yet had a chance to experiment with tiled or parallel execution
of this code. For details on our experiments with AlphaZ beyond those given below, see [17].

5.1 One-Dimensional Stencil

When using AlphaZ to transform the one-dimensional stencil, we were able to achieve tiled single-core
performance of 3.4 GFLOPS and single-node performance of 10.9 GFLOPS, both roughly 75% of the
figure given for Pluto in Table 1. (Note, however, that the values are not precisely comparable, as they
used different tile sizes.) We found it interesting that the performance of the most straightforward set of
equations given in Figure 3 was sometimes slightly less than what we produced with a set of equations
that mimicked the two arrays of the imperative code.

We used ClOMP to execute the OpenMP programs produced by AlphaZ on a 32-core subset of our
cluster. In several experiments with different numbers of time steps, total performance did not exceed 40
GFLOPS, roughly half the performance of the Pluto-generated code.

5.2 Two-Dimensional Stencil

We were able to produce very quick uniprocessor codes for the two-dimensional stencil with AlphaZ. How-
ever, two-level tiling was critically important for good performance on the cluster, so we did not explore
this benchmark in detail.

5.3 Simplified Tomcatv

We experimented with several AlphaZ formulations of the simplified Tomcatv benchmark. For the best of
these, AlphaZ produced code that ran at about 75% of the speed of the code produced by icc for the C
version we had tried to transform with Pluto. We look forward to having a chance to experiment with
tiling and parallelization of this code, though it is not clear that AlphaZ will be able to tile it as it cur-
rently exists: one loop nest has intra-iteration dataflow along an entire dimension of an array, making
tiling more complex than it would be for a two-dimensional stencil.

6 Discussion

The combination of Pluto and ClOMP has given us impressive cluster performance for the simple stencil
computations, but we were unable to get Pluto to transform the more complex loop nest. We plan to
modify this code without significantly simplifying the algorithm, in hopes of getting success with Pluto,
and provide feedback to the developers.

AlphaZ was able to handle all algorithms and provide good performance on a single core. It can also
express storage mapping transformations, unlike Pluto, and it will let us explore different formulations of
the time skewing transformation. Its lack of direct support for multi-level tiling hinders some of our work
for the two-dimensional stencil, though we hope to find a work-around, and we look forward to experi-
menting with it further.
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While running our experiments, we noticed a number of factors that seem to contribute to the execu-
tion speed of our time-tiled codes running on a cluster via ClOMP. Where performance suffered for the
two dimensional stencil despite the use of gigabit Ethernet, the htop tool indicated that some nodes were
being fully utilized, while others remained completely idle. The drops from 92% efficiency at 44 cores to
73% at 56, and from 87% at 24 cores to 55% at 40, seem to be due to additional nodes being added to our
system without being given any work. We believe that more consistent efficiency could probably be
achieved for this code was a different infrastructure, or possibly with different options to ClOMP.

In contrast, the lower performance with 100Mb Ethernet for our one-dimensional stencil involved many
nodes with relatively low processor utilization. Preliminary experiments with larger tiles, which might
provide better balance, gave even worse results. The lower time-tiled results of Figure 4 occurred with the
settings described in Sections 2 and 3 of this article when all nodes were connected with a gigabit switch
and ethtool was used to set each node to communicate at 100Mb/sec; for our first set of experiments[16],
which produced better results, most nodes were connected via a 100Mb/sec switch and ethtool was used
on only four nodes, different level two tile sizes or ClOMP parameters may have been used, and experi-
ments were done with a one-dimensional Jacobi stencil with the same dataflow pattern and data set size,
but for which the computation in the loop nest did not double the A[i] term, and the sum was multiplied

by
1

3
rather than

1

4
. We plan to investigate issues of benchmark variation, network hardware, ClOMP

parameters (including number of processes per node and number of threads per process), tile size, etc., in
January 2012, and hope to have an explanation before the CCGrid meeting. One challenge arising from
the use of a collection of different software components is a wide number of places where a performance
bug could hide.

7 Related Work

The SuperMatrix system[18] supports the execution of dense matrix codes on clusters, but code must be
specially written for it. While most of the supermatrix results presented at the Cluster 2007 confer-
ence[18] are not directly comparable to ours, the one graph of efficiency (for Cholesky factorization) shows
efficiencies consistently below 90% for eight threads (on a sixteen-processor system; lower efficiencies were
obtained for more threads).

Min, Basumallik, and Eigenmann have explored compile-time optimization to tune parallel codes
written with OpenMP for distributed shared memory systems[19][20][21]. Unlike our work, this approach
presumes that the programmer has already identified and expressed parallelism. More significantly, this
work did not target scalable locality, focusing on data privatization, “selective data touch”, “overlap of
computation and communication through dynamic scheduling and barrier elimination”, “recognition of
transformed reduction idioms”, and “optimization of sends and receives for shared data”. Results in these
papers are hard to compare with our preliminary results, as they did not scale up problem sizes and
obtained super-linear speedups in some cases[21].

For some problem domains, compilers have been developed to automatically generate the appropriate
sends and receives from annotated sequential code (for example, Fortran D[22]), but we do not know of
recent work to compile this sort of code for clusters.

The work that is most closely related to ours is that of Classen and Griebl[23]. This work, like ours,
uses a modern compiler infrastructure to achieve effective automatic parallelization on a distributed
memory system. Classen and Griebl also measured speedups of a one-dimensional stencil, though their
code was an in-place two-point stencil rather than our three-point stencil with a temporary array (we
believe either system could be applied to either stencil). They demonstrated roughly 70% efficiency for 4
dual-core 1GHz Pentium III nodes. In principle, we believe this sort of special-purpose code generator for
distributed memory could at least equal any combination of shared-memory optimization and distributed
shared memory software — the main drawback of the “code generation for distributed memory” approach
is that it requires that a specialized distributed memory code generator be integrated into each optimizing
compiler.
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8 Conclusions

We have demonstrated that static code optimization tools can produce good performance on a cluster of
non-trivial size, through a simple coupling of techniques designed for shared memory but scaled up for
higher locality, together with software distributed shared memory. These results do not require exotic net-
work interconnects, and can even be used with less than state-of-the-art interconnect speeds. This makes
clusters an appealing alternative to the traditional expensive supercomputers that are usually targeted by
optimizing compilers.

While the compile-time transformations we have used are designed for dense numerical codes, the ideas
behind our work may be more broadly applicable in the cluster computing context. Specifically, we see
this as an illustration of the general principle that optimization infrastructure designed to allow tuning of
locality as well as parallelism can be used for supercomputers and homogeneous dedicated clusters.
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