
Automatic Synthesis of a Voting Machine
Design

Lili Dworkin
Haverford College

Sanjit Seshia
University of California, Berkeley

Wenchao Li
University of California, Berkeley

Haverford College Computer Science Tech Report 2010-02
Archived November 2010

Abstract

Synthesis from specification has long been considered the “holy
grail” of the design process. Instead of implementing a design by hand,
we prefer to provide a high-level description of the design, and have the
implementation automatically generated. Synthesis also eliminates
the need for verification, since the synthesized design is correct-by-
construction. We apply two methods of synthesis to the design of an
accurate and reliable voting machine. In the first approach, we use
an automata-theoretic approach to perform synthesis from a linear
temporal logic specification. In the second approach, we use a modified
version of the L* algorithm to perform synthesis from scenarios. We
compare the two approaches in terms of effort required and results
produced, and suggest a third alternative combining aspects of each.

1 Introduction

Automatic synthesis of a digital design is a desirable alternative to the man-
ual design process. The traditional approach to design is first to implement
the design in a hardware description language (HDL), and then perform ver-
ification. An HDL is a programming language used to describe electronic

1

circuits. Verification refers to the process of checking whether an imple-
mentation satisfies its specification, a set of requirements that the program
must fulfill in order to be correct. The motivation for automatic synthesis
stems from the difficulties and costs associated with both the implementa-
tion and verification steps. A hand-written implementation of the design is
susceptible to human error, and must be rewritten every time the specifi-
cation is updated. Additionally, verification is often the most difficult and
time-consuming part of the design process.

An alternative approach is to automatically synthesize the design from
its specification, thereby eliminating the need for manual implementation.
We explore two methods, both of which synthesize a design, but which differ
in the input required. We apply both variations to the problem of designing
an accurate and reliable voting machine. Voting machine synthesis is an
especially compelling problem, because there are few ways to guarantee that
the machine will work both accurately and in the expected manner. Thus, we
are motivated by the goal to synthesize a design that is guaranteed to work
properly. Specifically, we seek to synthesize the voting machine described
by Sturton et al [7]. This simple machine can be used for an election with
multiple contests and multiple candidate selections in each. The display
screen includes buttons for navigating between contests, choosing candidates,
and casting a vote. We implement the design as a finite state machine, in
which each button press corresponds to a transition between states.

In the first synthesis approach we attempt, the prerequisite for synthe-
sis is a complete formal specification. The specification is usually given in
temporal logic, a language for representing properties of a system in terms of
time [6]. The benefit of synthesizing directly from a formal specification is
that we eliminate the need for verification, because the synthesis algorithm
guarantees that the resulting design satisfies its specification. In this case,
we say the synthesized design is “correct-by-construction.” Our task then is
simply to write a specification that accurately describes the desired behav-
ior. If such a specification proves too difficult to write, we turn to our second
approach, which does not require a specification. The prerequisite is instead
a set of scenarios, which are traces of the correct execution of the program.
If we provide a set of scenarios that describe all correct program behaviors,
the synthesis will output a design meeting the specification.

The contributions of this paper are the following:

• Assuming the structural properties of the voting machine are satisfied,

2

Figure 1: Synthesis Approaches

we can synthesize an implementation both from a linear temporal logic
specification and from scenarios.

• Given a box diagram of the voting machine, a set of scenarios satisfy-
ing the coverage criteria described by Sturton et al [7] is sufficient for
synthesis of a hierarchical state machine.

• We present a comparison of the time and effort required to use each
synthesis approach, as well as evaluating the quality of the results pro-
duced.

• We discuss current work being done on a promising third approach that
combines aspects of both LTL and scenario-based synthesis.

We proceed as follows: Section 2 reviews background material We discuss
LTL synthesis in section 3, synthesis from scenarios in section 4, and compare
the two approaches in section 5. In section 6 we explore the possibility of a
combined approach. Section 6 concludes and presents directions for further
work.

2 Preliminaries

2.1 Finite State Transducer

A finite state transducer (FST) is a finite state machine with both an input
and output tape. We use an FST to represent the voting machine design.
We formally define an FSM as the 6-tuple (I, O, S, δ, ρ, sinit) where:

• I is the set of inputs

• O is the set of outputs

• S is the set of states

3

Operator Meaning
X φ Next φ
G φ Always φ
F φ Eventually φ
φ U ϕ φ Until ϕ

Table 1: LTL Modal Operators

• δ : S × I → S is the transition function

• ρ : S → O is the output function

• sinit is the initial state

2.2 Linear Temporal Logic

Linear temporal logic (LTL) is a type of temporal logic used to express prop-
erties of a system over linear time. LTL formulas are evaluated over paths or
traces of a system’s exeuction. The syntax consists of propositions, Boolean
algebra, and temporal modal operators, as explained in Table 1. Formally,
the language of LTL is as follows. Let P be a set of propositions defined over
a system’s input and output signals. LTL formulas are defined recursively:

• True and False are formulas

• p ∈ P are formulas

• If φ and ϕ are formulas, then ¬φ, φ∧ϕ, φ∨ϕ , φ→ ϕ, and φ↔ ϕ are
formulas

• Additionally, if φ and ϕ are formulas, then Xφ, Gφ, Fφ, and φUϕ are
formulas

There are two main types of LTL properties: safety and liveness proper-
ties. Safety properties ensure that something “bad” never happens, and have
the general form G¬φ. Liveness properties ensure that something “good” al-
ways happens, and have the general form G(F(φ)) or G(ϕ→ F(φ)).

4

2.3 Angluin’s Algorithm

Angluin [2] presented an algorithm, termed as L*, for learning a deterministic
finite automata (DFA) that accepts a regular language L over the alphabet
Σ. The algorithm is online meaning it can receive and process input while
running. An offline algorithm, on the other hand, can only use a set of inputs
provided initially.

Like many online algorithms, L* works by interacting with a teacher and
an oracle. The teacher answers membership queries, in which L* asks whether
the target DFA accepts a certain string s. The oracle answers equivalence
queries, in which L* asks whether a conjecture DFA is correct. If the con-
jecture is incorrect, the oracle returns a counterexample, which is a string s
that is accepted by either the conjecture or target DFA, but not the other.

The algorithm works by building a set S of string prefixes and a set
E of suffixes. For every prefix-suffix combination, the algorithm asks a
membership query and records the result in an observation table. We ac-
cess an entry in the observation table by calling the function T : S × E =
{accepted, rejected}. When an equivalence query is answered affirmatively,
the algorithm terminates, and the observation table is used to generate a
corresponding DFA.

2.4 Voting Machine

Sturton et al [7] present a voting machien design as an FST implemented in
the hardware description language Verilog. This state machine representation
is semantically equivalently to the Verilog implementation.

The voting machine consists of the following components, or modules:

• Map - converts user’s touch to a corresponding button press

• Controller - determines which contest is currently active

• Selection State - controls the candidates selected in each contest

• Cast - commits the final values of the selection state of each contest to
memory

• Display - generates the output screen

The formal specification of the voting machine consists of:

5

Algorithm 1 Angluin’s Algorithm

S = {λ}, E = {λ}
Fill in table by asking membership queries for λ and a ∈ Σ
while correct DFA not found do

while not closed or not consistent do
if ∃s ∈ S, a ∈ Σ such that ∀s′ ∈ S, T (s · a) 6= T (s′) then

Add s · a to S
Fill in table by asking membership queries over (S ∪ (S · A)) · E

end if
if ∃s1, s2 ∈ S such that T (s1 ·e) = T (s2 ·e), ∀e ∈ E and ∃a ∈ Σ, e ∈ E
such that T (si · a · e) 6= T (s2 · a · e) then

Add a · e to E
Fill in table by asking membership queries over (S ∪ (S · A)) · E

end if
end while
Ask equivalence query
if given counterexample t then

Ad t and prefixes of t to S
Fill in table by asking membership queries over (S ∪ (S · A)) · E

else
Correct DFA found

end if
end while

6

1. Formal specification of each component

2. Behavioral properties of entire machine

3. Structural properties of entire machine

4. Formal model of human expectations of a voting machine’s operation,
called the specification voting machine

The specification voting machine is defined as an FST where the set of input
events correspond to a user’s button press, and the set of outputs include
changes in the current contest and candidate selection states. Formally, the
input set I includes input events b ∈ I corresponding to the navigation
buttons next, previous, and cast, as well as the candidate selection buttons
{candidate0...candidatek−1} where k is the maximum number of candidates
in each contest. The output set O includes output events of the form (i, si)
where i represents the active contest and si is the selection state, or set of
candidates currently selected in contest i. We let i ∈ {1...n} where n is the
number of contests in a given election. Additionally, si ⊆ {1...k} and |si| ≤ l,
where l is the maximum number of candidates that can be selected in each
contest.

A possible trace of the specification voting machine is:

next, (2, {}), (candidate1), (2, {1})

In this project, we work with a simplified version of the voting machine.
The map and display modules have been abstracted away, leaving the con-
troller, selection state, and cast modules. The machine consists of only two
contests, each of which have at most two candidates. Only one candidate
can be selected per contest. Thus, we have n = 2, k = 2, and l = 1.

3 LTL Synthesis

3.1 Lily

Jobstmann and Bloem [3] have designed a command-line tool Lily, written in
Perl, that implements an automata-theoretic approach to LTL synthesis. We
use Lily to synthesize the cast, controller, and selection state modules of the
voting machine. Generally, LTL synthesis is impractical, as the algorithm is

7

2EXPTIME-complete. If we restrict the specification to a particular subset
of LTL, we can reduce the complexity to polynomial time. This subset of
LTL consists of formulas of rank 1 generalized reactivity (GR(1)). Lily does
not restrict the specification to GR(1) formulas. Instead, in order to speed
the execution of the algorithm, Lily performs a highly optimized version of
Kupferman and Vardi’s LTL synthesis algorithm [4]. Given a realizable LTL
specification, Lily generates both a Verilog and state machine implementation
of a design that fulfills the specification. A specification is realizable if a
corresponding implementation exists.

Lily works by treating the synthesis problem as a game between the en-
vironment and system. The purpose of the tool is to synthesize a program
with a set of inputs I and outputs O. The environment controls the input
signals in I, and the system controls the output signals in O. The strategy
the system follows is to determine a correct output value for each input se-
quence. The environment is hostile, in that it tries to force the system to
violate the specification. If this occurs, the system loses the game, which in-
dicates that the specification is unrealizable. The system wins when it fulfills
the specification over I ∪ O. In this case, a correct implementation of the
specification has been identified, and the synthesis terminates successfully.

3.2 LTL Specifications

The challenge of using Lily is to provide an accurate and complete LTL
specification for each module, one that results in a correct design and cannot
be satisfied trivially. As mentioned in section 2.1, the formal voting machine
specification given by Sturton et al [7] provides a LTL specification for each
module, as well as behavioral properties that apply to the entire machine.
Before these specifications could be given to Lily as input, two modifications
were made. First, we added fairness properties, a type of liveness property
that put necessary constraints on the environment. Second, all inputs and
outputs were converted to Boolean values, as Lily can only process Boolean
signals. For the number of properties in each specification provided as input
to Lily, see Table 2.

3.3 Results

The LTL specifications written by Sturton et al [7] proved to be sufficient for
synthesis of a simplified voting machine. For each of the controller, selection

8

Module Inputs Outputs LTL
Properties

Controller 7 3 4 3 14 8
Selection

State
7 3 2 1 25 7

Cast 5 3 4 2 25 12

Table 2: LTL Specifications (second column gives values if Lily accepted
non-Boolean signals)

Module Synthesis
Time (sec)

Lines of
Verilog

States in
FSM

Controller 130.85 90 7
Selection

State
23.12 60 4

Cast 540.68 340 16

Table 3: Synthesized Designs

state, and cast modules, Lily synthesized a correct Verilog implementation
and corresponding FSM. We have run these experiments, as well as those
described in the rest of the paper, on a Mac OS 10.5 machine with a 2.4 GHz
Intel Core 2 Duo processor and 2 GB of RAM. Our results are summarized
in Table 3.

Once Lily has synthesized each module, we can link the Verilog imple-
mentations together to produce the final design. The multiplexor between
the controller and selection state modules was written by hand.

We test each module, as well as the complete voting machine, using the
Verilog simulation tool Icarus Verilog. Each individual component of the ma-
chine is correct-by-design. However, because the synthesis was component-
based, the global behavioral properties given by Sturton et al for the original
machine remain to be verified [7]. We used Cadence SMV [5], a symbolic
model checking tool, to verify the three behavioral properties.

We now review an alternate method for synthesis from specification. This
synthesis approach, discussed in the next section, uses scenarios instead of
LTL properties.

9

4 Synthesis from Scenarios

4.1 L* Implementation

For our synthesis problem, it was necessary to implement a modified ver-
sion of the L* algorithm. We wrote this implementation of the algorithm
as an executable Python script. Our implemenation differs from L* in two
ways. First, our implementation generates a FST instead of a DFA. There-
fore, instead of asking membership queries, the algorithm asks output queries.
Whereas membership queries determine whether a given input string is ac-
cepted, output queries determine the corresponding output string for a given
input string.

Second, our implementation works offline instead of online. A set of
example input/output string pairs are provided to the algorithm initially,
and output queries are answered by searching this set. If the input string is
not found in the set of examples, the query returns null. Equivalence queries
are answered by iterating through the set of examples and checking whether
the candidate FST produces the correct output for each. If one fails, that
input string is used as the counterexample.

4.2 Scenarios

Before the above implementation of L* could be used, a set of scenarios have
to be provided. Here we used scenarios satisfying a set of coverage criteria
defined by Sturton et al [7]. If we have shown that our design satisfies
certain structural properties, we can generate a test suite T that satisfies
these coverage criteria. As proven by Sturton et al[7], T is sufficient for
verification of the design. The significance of this result is that T includes
only a polynomial number of tests. Specifically, the size of T is O(n ·k) where
n is the number of contests and k is the number of candidates in each. The
coverage criteria are described below:

1. Initial state coverage: ∃t ∈ T such that t does not transition out of the
initial state of the design.

2. Transition coverage: For every transition δ((i, si), b) in the design, ∃t ∈
T such that t includes this transition.

3. Output screen coverage: For every output state (i, si), ∃t ∈ T such
that t ends at this state.

10

Figure 2: Voting Machine

We used these criteria to write a set of scenarios for synthesis. The hy-
pothesis we tested was that such a test suite, already proven to be sufficient
for verification, would be sufficient for synthesis, as well. Because the com-
plexity of the L* algorithm is polynomial in the number of states of the target
state machine, and our machine has O(nk) states, we aim for synthesis of a
hierarchical state machine, or HSM. An HSM is a state machine in which the
states can be either ordinary states or state machines themselves [1]. Thus,
instead of synthesizing the entire “flat” state machine, we synthesize each
independent level separately. In order to do this, we must have a box dia-
gram of our target state machine. The voting machine’s structural properties
guarantee independence between navigatation between contests and candi-
date selection within contests, so we come up with the structure in Figure 2.
Synthesizing the navigation and candidate selection separately reduces the
number of states in each target FSM to O(n) and O(k), respectively.

We used the following sets of scenarios (also summarized in Table 4), each
of which satisfies the coverage criteria given above:

Navigation:

1. ε→ (1, si)

2. (previous)→ (1, si)

3. (next)→ (2, si)

4. (next), (next)→ (2, si)

5. (next), (previous)→ (1, si)

Individual Contest:

1. ε→ (i, {})

11

Inputs Outputs Scenarios
Navigation 2 2 5

Candidate Selection 2 3 7

Table 4: Scenarios

2. (candidate1)→ (i, {1})

3. (candidate2)→ (i, {2})

4. (candidate1), (candidate1)→ (i, {})

5. (candidate1), (candidate2)→ (i, {1})

6. (candidate2), (candidate2)→ (i, {})

7. (candidate2), (candidate1)→ (i, {2})

Note that because the navigation inputs only affect the contest number
i in the output tuple (i, si), we leave the selection state si unspecified in the
navigation test suite. Similarly, because the candidate selection inputs only
affect the selection state si , we leave the contest number i unspecified.

4.3 Results

The synthesized navigation and candidate selection state machines are shown
in Figure 3. We combine these state machines into an HSM (Figure 4), which
can then be flattened into a regular FSM by taking the cross product of the
three machines.

5 Comparison

5.1 Effort

5.1.1 Writing Tool

There was no need to write a tool for LTL synthesis, since Lily was built for
that purpose. In order to perform synthesis from scenarios, however, it was
necessary to write a modified implementation of the L* algorithm. Although
not a difficult algorithm to program, this step required a moderate amount

12

(a) (b)

Figure 3: (a) Navigation and (b) Candidate Selection (using the following
shorthand: prev = previous, cand1 = candidate1, and cand2 = candidate2)

Figure 4: HSM

Writing Tool Writing Inputs Manipulating Results
LTL None 1 week ; difficult 3-4 days ; difficult

Scenarios 3-4 days ; difficult < 1 day ; easy < 1 day ; easy

Table 5: Effort Comparison

13

Module Transition
Properties

Total
Properties

Controller 11 14
Selection State 24 25

Cast 25 25

Table 6: Transition Properties

of time and consideration. A notably challenging step was deciding how best
to write an offline implementation of the original online algorithm.

5.1.2 Writing Inputs

Although Lily worked as expected when provided with complete and real-
izable LTL specifications, writing such specifications was difficult and time-
consuming. The main challenge was not being able to tell when the LTL
specification included sufficient properties for correct synthesis. This prob-
lem arose often because a large number of LTL properties had to be written
to define state transitions. If the LTL property is of the form G(ϕ→ X(φ)),
we categorize it as a transition property. While writing the specification, it
was easy to miss necessary transition properties and assume the specification
was finished when it was still incomplete. Table 6 illustrates the high ratio
of transition properties to total LTL properties.

Another source of difficulty was coming up with appropriate fairness con-
straints. For the controller and selection state module specifications, it was
often necessary to preface an LTL property π with the fairness constraint
G(F(reset = 1))→ π. For the cast module specification, G(F(cast = 1))→
π was used instead. In each case, choosing the appropriate environmental
restriction was not straightforward.

These issues demonstrate the limitations of LTL synthesis. If our ex-
perience with the voting machine example is indicative of LTL synthesis in
general, the method does not scale well. While it is possible to write a correct
and realizable specification for a large design, the process is time-consuming
and difficult.

On the other hand, writing a set of scenarios to be used as input to L* is
relatively easy. The coverage criteria provide a helpful template, and allow
us to determine when enough scenarios have been written. Furthermore,

14

although we have no algorithm for generating this suite, doing so manually
is not difficult. Each scenario is an intuitive way to represent a property of
the voting machine. For instance, if we want to specify the property that
pressing a candidate button twice in a row results in deselection of that
candidate, we write the following scenarios:

(candidate1), (i, {1}), (candidate1), (i, {0})

(candidate2), (i, {2}), (candidate2), (i, {0})

In comparison, we would write the following LTL formulas to specify the
same property:

G(reset→ X(G(ss selector ∗ ¬reset ∗ candidate1 ∗ selection state1 →
X(selection state1))))

G(reset→ X(G(ss selector ∗ ¬reset ∗ candidate2 ∗ selection state2 →
X(selection state2))))

In our experience, the scenarios given above are easier to write and un-
derstand than the corresponding LTL properties. Of course, whereas an
implementation synthesized from the LTL properties is guaranteed to be
correct, an implementation synthesized from the scenarios is not. In the vot-
ing machine example, a suite satisfying the coverage criteria proved sufficient
for correct synthesis, but it remains to be proven whether this result holds
generally. We revisit this issue in Section 5.2.2.

One difficulty that applies to writing both LTL and scenario specifica-
tions is determining when the specification is complete. Besides attempting
synthesis and evaluating the result, there is no way to know whether a spec-
ification contains sufficient LTL properties or scenarios. We often fell into
a cycle of rewriting the specification, resynthesizing, and repeating until the
correct implementation was produced. The desire to reduce iterations of this
cycle motivates the incremental synthesis approach, as discussed in Section
6.

5.1.3 Manipulating Results

In both synthesis approaches, providing correct inputs to the correspond-
ing tool or algorithm did not produce an immediately correct result. Lily

15

Synthesis
Time

Correctness States in
FSM

LTL 10 min Correct-by-
design

448 (upper
bound)

Scenarios < 1 sec Needs to be
verified

18

Table 7: Results Comparison

was used to synthesize three Verilog modules, which then had to be wired
together to produce a final design. This process was done by manually, by
writing a Verilog wrapper module. It was also necessary to implement an
additional multiplexor module to connect the controller to the appopriate se-
lection state. Although not a conceptually difficult task, a certain amount of
tweaking inputs and outputs was necessary to connect the modules together
properly. For instance, the ss enable signal, originally defined as a register,
had to be implemented as a wire in order for the design to work. Thus,
understanding and working with the Verilog generated by Lily was moderate
hurdle in the LTL synthesis process.

Although it was also necessary to combine the FSMs generated by the
scenario-based approach, this task was very straightforward. Since the box
diagram was a prerequisite for synthesis, the structure of the final HSM was
known ahead of time. The two layers synthesized by the L* algorithm fit
together exactly as described by this structure. Additionally, flattening the
HSM into a regular FSM simply requires taking the cross product of the
component machines.

5.2 Results

5.2.1 Synthesis Time

The total time required to synthesize the three voting machine modules using
Lily was about ten minutes. In contrast, L* synthesizes the navigation and
candidate selection machines in less than a second. This comparison is of
limited use, however, because the three modules synthesized by Lily do not
correspond to the two state machines synthesized by L*. The former use
internal signals of the voting machine, whereas the latter only connect initial

16

inputs, or button presses, to the corresponding final outputs, or ballots.
Thus, we would expect the LTL synthesis to take longer. Not only does
Lily need to synthesize an additional module, but it also processes more
signals in each (see also Tables 2 and 4).

5.2.2 Correctness

One major benefit of LTL synthesis is that the output is correct-by-design.
Since the specification was used to generate the result, the result automat-
ically satisfies the specification. Thus, each module synthesized by Lily is
guaranteed to meet its specification. However, the three behavioral proper-
ties of the entire machine still remained to be verified. This is a consequence
of using component-based synthesis. Thus, we used Cadence SMV to verify
these properties, as mentioned in Section 3.3. The command-line implemen-
tation of this tool verified the three global properties in less than a second.

When synthesizing from scenarios, there is no guarantee that the resulting
design will meet its specification. Thus, formal verification is still necessary.
In the future, perhaps a set of criteria will be proven to be accurately de-
scribe a test suite sufficent for correct synthesis. If we can prove that, in
the general case, a suite satisfying the coverage criteria always produces the
correct result, then the formal verification step could be eliminated. At this
point, however, no such proof exists.

5.2.3 Size

Neither Lily nor L* is guaranteed to produce the minimum state machine.
Since Lily was used to synthesize individual components, rather than an en-
tire machine, there is no way to accurately determine the size of the synthe-
sized voting machine. We can obtain an upper bound by taking the product
of the sizes of each component module. The resulting bound is 448 states,
which is significantly larger than 18, the number of states in the flattened
HSM synthesized using L*. However, the usefulness of this comparison is
debatable. A number of the 448 states may be equivalent, and therefore
collapsable into a single state. Additonally, some of these states may be un-
reachable. Thus, had Lily been used to synthesize the entire machine, rather
than each component, the number of states in the resulting machine might
have been much less than 448.

17

6 Combined Approach

We are currently exploring a synthesis approach that combines synthesis
from LTL with synthesis from scenarios. The idea is to synthesize a design
from a partial LTL specification, and then refine the design using examples.
There are many reasons to pursue such an approach. The main motivation
is that certain properties of a design are easier to express in LTL formula,
whereas others are easier to describe using examples. A hybrid approach
allows us to use both LTL and examples, without writing a full set of either,
to express the specification most naturally. This allows us a great deal more
flexibility when describing our design. As long as the LTL specification is
realizable, it does not matter if the specification is complete or correct. For
instance, an additional safety constraint or missing transition property can
be incorporated into the design after the initial synthesis by using examples.
As such, this hybrid approach facilitates incremental synthesis. Instead of
resynthesizing the entire design when the specification changes, we simply
refine the implementation with examples that reflect the change.

An overview of the method is as follows. We provide as input a partial
LTL specification S and a set of scenarios T , which reflect properties of the
design not covered by S. We use S to generate a candidate FSM, M , which is
then provided as input to the oracle of L*. The equivalence query is answered
by testing M against each tεT . If M fails to produce the correct output for
one of the scenarios, that scenario will be used as the counterexample. The L*
algorithm refines M until the machine, now called M ′, produces the correct
output for each scenario.

Two directions for this work are:

• Prove that M ′ still satisfies S

• Write an algorithm for generating T

7 Conclusion

We have demonstrated that, assuming knowledge of the structural properties
of the voting machine, we can synthesize an implementation both from formal
specification and from scenarios. In the former case, the LTL specifications
given by Sturton et al [7] are sufficient for synthesis. In the latter case, a test

18

suite that satisfies the coverage criteria given by Sturton et al [7] is sufficient
for synthesis.

This work highlights many directions for further research. Although we
have discussed one example of using Lily for LTL synthesis, it remains to be
seen how the tool performs on other designs. Our experience suggests that the
tool may not be practical for large or complex designs, given the difficulty of
writing accurate and complete LTL specifications. More work could be done
to determine whether such experience is typical of LTL synthesis using Lily,
or particular to our example.

Similarly, more work could be done to determine whether the results of
our scenario-based synthesis apply to the general case. We have demon-
strated that, given a box diagram of the voting machine’s structure, a test
suite satisfying the coverage criteria is sufficient for synthesis. We do not
know if this result holds for all designs. Furthermore, we have not yet iden-
tified a method for generating such a test suite automatically. Thus, more
work could be done to identify a heuristic for generating sufficient, yet mini-
mum, scenarios, as well as to determine the complexity of HSM synthesis in
the general case.

Perhaps the most interesting direction of research is combining LTL spec-
ifications with scenarios. This idea is briefly summarized in the previous
section. This approach would address the limitations of both approaches,
and provide the freedom to write a specification using LTL formulas as well
as concrete examples. Thus, the work presented here identifies the strengths
and weaknesses of two synthesis approaches, and lays the groundwork for a
third, more promising, strategy.

References

[1] Rajeev Alur. Verification: Theory and Practice, volume 2772 of Lecture
Notes in Computer Science, chapter Formal analysis of hierarchical state
machines, pages 434–435. Springer Berlin, 2004.

[2] Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75:87–106, 1987.

[3] Barbara Jobstmann and Roderick Bloem. Optimizations for ltl synthesis.
In FMCAD ’06: Proceedings of the Formal Methods in Computer Aided

19

Design, pages 117–124, Washington, DC, USA, 2006. IEEE Computer
Society.

[4] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In
FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 531–542, Washington, DC, USA, 2005.
IEEE Computer Society.

[5] Kenneth L. McMillan. Cadence smv.
http://www.kenmcmil.com/smv.html.

[6] Amir Pnueli. The temporal logic of programs. In FOCS ’77: Proceedings
of the 18th Annual Symposium on Foundations of Computer Science,
pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[7] Cynthia Sturton, Susmit Jha, Sanjit A. Seshia, and David Wagner. On
voting machine design for verification and testability. In CCS ’09: Pro-
ceedings of the 16th ACM conference on Computer and communications
security, pages 463–476, New York, NY, USA, 2009. ACM.

20

