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Abstract

The Omega Project, led by Bill Pugh of the University of Maryland at College Park, explored
advanced techniques for analysis and transformation of dense numeric codes. This project was
one of the first to use affine constraints on integer variables for static program optimization.
In addition to numerous articles, the Omega Project released source code for many of their
algorithms. Most of their constraint manipulation algorithms were released as the Omega
Library and the text-based Omega Calculator; many of their program transformation algo-
rithms were released as Petit (“Pugh’s Extended Tiny Isn’t Tiny”), a tool for exploring static
program transformation that was based on Michael Wolfe’s “tiny” system.

This document gives a brief description of the major results of the Omega Project,
including both approaches to program optimization and algorithms for constraint manipula-
tion.
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1 Exact Instance-Based Array Dependence Information

Optimization of loop nests requires information about dependences that is both detailed and
accurate. Even for the restricted case in which array subscripts and loop bounds must be affine
functions of loop indices, testing for the existence of a dependence is equivalent to testing satisfia-
bility of a conjunction of affine constraints on integer variables, which is NP-complete [GJ79].
Fortunately, in practice most array subscripts and loop bounds are even simpler, and low-com-
plexity tests such as the GCD test and Banerjee’s Inequalities produce accurate results in many
cases.

In the late 1980’s and ’90’s, Paul Feautrier and Bill Pugh led independent efforts to improve
array dependence analysis with techniques that were exact for the entire affine domain and fast
for the common cases [Fea88, Pug91a, Pug92]. While some researchers felt exponential algo-
rithms had no place in compilers, others saw value in the more precise information produced by
these techniques. This approach, known variously as “constraint-based analysis”, the “polyhedral
model”, or “instance-wise analysis”, remains an important tool for advanced restructuring com-
pilers, some of which make use of the original code of Pugh or Feautrier. The remainder of this
article reviews the work of Pugh’s Omega Project; information about other work on this area
must be found elsewhere, such as the upcoming “Encyclopedia of Parallel Computing”.

1.1 Traditional Dependence Abstractions

To illustrate some of the issues involved in dependence analysis, consider the codes shown in
Figure 1 — each of these loops might write an element of array A that is read in a later iteration,
so each is said to exhibit an inter-iteration flow dependence based on A, which inhibits parallel
execution of the loop iterations. Earlier work on dependence analysis not only approximated
some affine cases, but also reported only simple dependence abstractions, e.g., identifying loops
that carry a dependence or classifying dependences with direction vectors or distance vectors.
Regardless of its accuracy or domain, any test that produces this information must report that
both loops carry a dependence with a distance that is not known at compile time (assuming we
lack information about n and k).

A more detailed examination of the dependences of Figure 1 reveals that the loops can be
parallelized with different strategies, as illustrated in Figure 2 (circles correspond to iterations,
with lower values of i to the left, and each arrow indicates a flow dependence between iterations).
For the illustrated case (n = 8 and k = 3), Figure 1a has dependences from iteration 0 (which
writes a value into A[0]) to iteration 7 (which reads a value from A[0]), from 1 to 6, from 2 to 5,
and from 3 to 4; Figure 1b has dependences from 0 to 3, 1 to 4, 2 to 5, 3 to 6, and 4 to 7. These
patterns suggest that there may be some cases in which we can run some of the iterations in par-
allel, e.g., when n = 8 and k = 3 we could execute iterations 0-3 of Figure 1a simultaneously, and
iterations 0-2 of Figure 1b simultaneously. However, conclusions about program transformation
must be made about the general case.

1.2 Dependence Relations

The Omega Test describes the dependences in terms of relations among tuples of integers. To
retain correspondence with the program being analyzed, these integers may be identified as
inputs (e.g., the source of a dependence), outputs (the sink), or symbolic constants. A finite set
of dependences can be given as a list (union) of such tuple relations, e.g., for Figure 2a as {[0] →
[7]} ∪ {[1] → [6]} ∪ {[2] → [5]} ∪ {[3] → [4]}. Integer variables and constraints allow a representa-
tion that is both concise (allowing {[i]→ [7− i] J 0 6 i 6 3} for Figure 2a) and general ({[i]→ [n −
1− i] J 0 6 i <

n

2
} when n is not known, as in Figure 1a).

2 Section 1
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// Example 1a // Example 1b

for (i=0; i<n; i++) for (i=0; i<n; i++)

A[i] = A[n-1-i]*B[i]; A[i+k] = A[i]*B[i];

Figure 1. Simple Loops Exhibiting Data Dependences

Example 1a Example 1b

Figure 2. Iteration Spaces and Flow Dependences for Figure 1, when n = 8 and k = 3.

These dependence relations follow directly from the application of the definition of data
dependence to the program to be analyzed. A flow dependence exists between a write and a read
(e.g., from iteration [i] to [i′]) when the subscript expressions are equal (e.g., i = n − 1− i′ in 1a),
the loop index variables are in bounds (0 6 i < n∧ 0 6 i′< n), and the dependence source precedes
the sink (i < i′). Combining these constraints produces { [i] → [i′] |i = n − 1 − i′ ∧ 0 6 i < n ∧ 0 6

i′< n∧ i < i′ } for 1a and { [i]→ [i′] |i′ = i + k ∧ 0 6 i < n∧ 0 6 i′< n∧ i < i′ } for 1b. These depen-
dence relations are exact in the following sense: for any given values of the symbolic constants
and loop indices, the constraints evaluate to true if and only if a dependence would actually exist.
The constraint-manipulation algorithms of the Omega Library (see Section 3) can confirm that
these relations are satisfiable and produce a simpler form, in these cases { [i] → [n − 1− i]| 0 6 i ∧
2i 6 n − 2 } (2i 6 n − 2 is equivalent to i <

n

2
but does not introduce division) and { [i] → [i +

k]| 0 6 i <n− k }.
This representation of dependences extends naturally to nested loops with the introduction of

additional variables in the input and output tuple — dependences among references nested in
loops i and j would be represented as relations from [i, j] to [i′, j ′]. An imperfect loop nest such
as that shown in Figure 3 raises the additional challenge of identifying the lexical position of each

for (t = 0; t < T; t++) {

for (i = 1; i < N-1; i++) {

new[i] = (A[i-1] + A[i] + A[i+1]) * (1.0/3);

}

for (i = 1; i < N-1; i++) {

A[i] = new[i];

}

}

Figure 3. A Set of “Imperfectly Nested” Loops

statement or inner loop (i.e. is it the first, second, etc. component within the loop?). This chal-
lenge can be met by interspersing (among the loop index values) constant values that give the
statement position. If the i loop in Figure 1 is the first (or only) statement in its function, and
the update to A is the first (or only) statement in this loop, we could represent the dependence
above as a relation from [1, i, 1]→ [1, i′, 1]. For Figure 3, the dependence from the write of A[i] to
the read A[i-1] is { [1, t, 2, i, 1]→ [1, t′, 1, i′, 1]| i′− 1 = i∧ t < t′∧ 0 6 t, t′< T ∧ 1 6 i, i′<N − 1}.

While it is possible to produce dependence distance/direction vectors from the dependence
relations produced by the Omega Test, the results are often no more accurate than those pro-
duced by earlier tests such as a combination of Banerjee’s inequalities and the GCD test. How-
ever, the added precision of the dependence relation can enable other forms of analysis or trans-
formation if it is passed directly to later steps of the compiler.

Exact Instance-Based Array Dependence Information 3
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2 Advanced Program Analysis and Transformation

The detailed information present in a dependence relation can be used as a basis for a variety of
program analyses, including analysis of the flow of values within a program’s arrays, analysis of
conditional dependences, and analysis of dependences that exist over only a subset of the itera-
tion space. This information can then be used to drive a number of program transformation/opti-
mization techniques on perfectly or imperfectly nested loops.

2.1 Advanced Analysis Techniques: The Omega Test

Information about the iterations involved in a dependence can reveal opportunities for paralleliza-
tion after transformations such as index set splitting or loop peeling. Note that any iterations
that are not the source of a dependence arc (e.g., iterations 4-7 of Figure 2a) can be executed
concurrently after all other loop iterations have been completed; and those that are not a sink
(iterations 0-3 in Figure 2a) can be executed concurrently before any other has started. The
Omega Library’s ability to represent sets of integer tuples as well as relations can be used to
show that there are never any iterations other than these non-sink and non-source iterations for
Figure 1a, so this loop (unlike that in 1b) can be run in two sequential phases of parallel itera-
tions.

The symbolic information present in a dependence relation can be used to detect conditional
dependences. The flow dependence relation for Figure 1b clearly implies that the flow depen-
dence exists only when 0 < k < n; the Omega Library’s projection and “gist” operations (see Sec-
tion 3.2) can be used to extract this information. A compiler could introduce conditional paral-
lelism (e.g., run the loop in parallel when n 6 k) or use additional analysis or queries to the pro-
grammer to attempt to prove no dependence ever exists.

By combining instance-wise information about memory aliasing with information about itera-
tions that overwrite array elements, the Omega Test can produce information about the flow of
values (termed “value-based dependence information” by the Omega Project). For example,
the “memory-based” flow dependence shown above for Figure 3 connects writes to reads in all
subsequent iterations of the t loop — i.e., when t′ > t. However, the value written in iteration t is
overwritten in iteration t + 1, and thus never reaches any subsequent iteration. The value-based
dependence relation includes this information, showing dependences only when t′ = t + 1, as
shown in Section 3.3. Value-based dependence information can be used for a variety of optimiza-
tions, e.g. to identify opportunities for parallelization after array privatization or expansion.

The Omega Project uses the term “Omega Test” for the production of symbolic instance-wise
memory- or value-based dependence relations via the steps outlined above. More detail about the
specific algorithms involved in dependence testing can be found in [PW98] as well as earlier pub-
lications by these authors.

2.2 Iteration Space Transformation

Iteration space transformations can be viewed as relations between elements of the original and
transformed iteration space, and thus represented and manipulated with the same infrastructure
as dependence relations. Iteration spaces can be related to execution order via a simple rule such
as “iterations are executed in lexicographical order”, thereby turning iteration space transforma-
tion into a tool for transforming order of execution. A similar approach can be used to describe
and transform the association of values to memory cells [Won02], though this has not been
explored as thoroughly.

4 Section 2
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The “transformation as relation” framework unifies all unimodular loop transformations (e.g.,
{[i, j]→ [j, i]} describes loop interchange) with a number of other transformations. Perhaps more
importantly, this framework handles imperfect loop nests, which lie outside the domain of uni-
modular techniques. For example, consider the problem of fusing the inner loops of Figure 3.
Simple loop fusion can be accomplished by making A[i] = new[i] into the second statement in the
first i loop, i.e., { [1, t, 2, i, 1] → [1, t, 1, i, 2]}. However, fusion without first aligning the loops is
illegal; { [1, t, 2, i, 1] → [1, t, 1, i + 1, 2]} is a correct alignment and fusion (now element A[1] is
overwritten in iteration i=2, just after its last use in the computation of new[2]). This transfor-
mation produces a loop nest with much better memory locality, since (barring interference) it
moves each array into cache only once per time step rather than twice. Algorithms for finding
useful program transformations in this framework, and for generating code from the resulting
iteration space sets, are discussed in [Pug91b, KP94, KP96, Won00].

2.3 Iteration Space Slicing

Iteration space transformations can also be defined in terms of “iteration-space slicing”: the
instance-wise analog of program slicing. This approach can express very general approaches to
program transformation in terms that are relatively concise and clear.

To illustrate iteration space slicing, consider the challenge of parallelizing the code in Figure
1b even when the dependence exists, as in Figure 2b. Figure 4 shows the iteration space of this

Figure 4. The Backward Iteration Space Slice for iteration 7 of Figure 2b.

loop when n = 8 and k = 3 (as in Figure 2b), together with the backward iteration space slice for
iteration 7 (the set of other iterations that must be executed to produce the value in the target
iteration). A similar backward slice for iteration 6 would include iterations 3 and 0.

It is possible to run Figure 1b as k concurrent threads, each of which updates every kth ele-
ment. A simple test could be used to identify and parallelize this specific case (a one-dimensional
loop with a single constant-distance dependence), but iteration space slicing provides a concise
way to generalize this idea: find the backward slices to the iterations that are not the source of
any dependence — if these slices do not intersect, they can be run concurrently to produce the
result of the loop nest.

In some cases, it may be necessary to find the iteration space slice needed to compute one
result given that another slice has already been completed. For example, consider the challenge of
increasing the memory locality of Figure 3 by more than the factor of two achieved in Section
2.2. Figure 5 shows the iteration space of a sample run of the original form of this code: each
time step is shown as a column of circles representing the computations of new[i], followed by a
column of squares representing the copy into A[i]. The slice needed to compute A[1] is shown as
dashed iterations surrounded by a dashed border; the marginal slice needed for A[2] given that
A[1] has been computed is shown as shaded iterations. Executing this code as a series of sequen-
tial slices can greatly improve the memory locality (given a cache large enough to hold the results
of a few slices, this can reduce memory traffic from O(T · N ) to O(N ) in the absence of interfer-
ence, producing dramatic speedups for slow memory systems [Won02]).

Advanced Program Analysis and Transformation 5
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Figure 5. Iteration Space and Two Slices for Figure 3, T = 3, N = 7.

Algorithms for iteration space slicing, for producing transformations with it, and for gener-
ating code to execute slices are described in [PR97, PR99, Won02].

3 Representation and Manipulation of Sets and Relations

The Omega Library (or simply “Omega” when in context) employs a number of techniques to
transform the constraints extracted from programs in Section 1 into answers to the questions of
Section 2. The details of representation and manipulation depend on the nature of the con-
straints and the question being asked.

Most algorithms can be expressed either in terms of individual (in)equations or higher order
operations on relations and/or sets. For example, a compiler could construct each memory-based
flow dependence relation by creating appropriate tuples for input and output variables and then
examining loop bounds, subscript expressions, etc., to produce the appropriate constraints on the
tuples’ variables. Alternatively, it could first define a set for the iteration space I of each state-
ment S (Is), and a relation M mapping loop iteration to array index for each array reference R

(MR), and relations T for forward-in-time order for various loop depths, and then construct a
flow dependence by combining these, i.e. the dependence from access x to y could be found by
taking (Mx •(My)

−1)∩Txy and restricting its domain to Ix and its range to Iy.

Some operations on relations or sets simply involve re-labeling of free variables, e.g. swapping
the input and output tuples to find R−1 from a relation R. Others such as intersection ( ∩ )
involve matching up variables from input and output tuples, and possibly converting free vari-
ables to quantified variables; in the relational join and composition operations (for R1•R2 or the
equivalent R2 ◦ R1), R1’s input tuple becomes the input tuple, R2’s output tuple the output
tuple, and R1’s outputs and R2’s inputs become existentially quantified variables, all constrained
to the intersection of the constraints from R1 and R2. Finally, some operations such as transitive
closure are defined in Omega only as relational operators.

6 Section 3
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The remainder of this section gives an overview of the algorithms used in the Omega Library.
It progresses from less-expressive to more-expressive constraint languages, roughly following the
historical development of the algorithms of the Omega Library, and gives descriptions in terms of
collections of (in)equations rather than relations or sets. For more detail on these algorithms or
the relationship between high and low-level operations, see the cited papers, or [KPRS95] for
transitive closure algorithms.

3.1 Conjunctions of Affine Equations and Inequations

The fundamental data structure of the Omega Library represents a conjunction of affine equa-
tions and inequations with integer coefficients (Omega does not currently represent disequations
such as n� m, so hereafter the term inequation refers only to < , 6 , > , and > constraints, each
of which is converted to > form internally). Each individual (in)equation is immediately reduced
to lowest terms (e.g. turning 3x + 9y + 21= 0 into x + 3y + 7 = 0), and hash keys that ignore con-
stant terms are used to quickly detect (and remove) simple redundancies (e.g., a− 2b > 0 and a−
2b + 10 > 0 have the same hash key and the latter can be removed). The hashing system also
detects (and replaces) pairs of inequations that are equivalent to an equation (e.g. i > 5 and i 6 5
are converted to i = 5).

High-level operations for these conjunctions rely on lower-level operations on sets of (in)equa-
tions, such as variable elimination and redundancy detection. Variable elimination is also referred
to as “projection” or finding the “shadow” of a set or relation, since finding the two-dimensional
shadow of a three-dimensional object can be thought of as an example of this operation. Note,
however, that the shadow of the integer points in a set/relation is not always the same as the
integer points in the shadow (as per the discussion of Figure 6 below).

To illustrate Omega’s variable elimination and redundancy detection abilities, recall the
dependence from Figure 1b. Checking for possible dependence corresponds to existentially quan-
tifying a dependence relation’s free variables (inputs, outputs, and symbolic constants), in this
example checking the formula (∃i, i′, n, k : i′ = i + k ∧ 0 6 i < n ∧ 0 6 i′ < n ∧ i < i′ ). None of the
six (in)equations of this formula is redundant with respect to any one other, so all are retained to
the start of our query. Omega begins by using equations to eliminate variables: given i′ = i + k it
could replace all occurrences of i′ with i + k, producing the formula (∃i, n, k : 0 6 i < n ∧ 0 6 i +
k < n∧ 0 <k ). (Additional properties of integer arithmetic are used to eliminate an equation even
when no variable has a unit coefficient, as discussed in [Pug91a].)

Upon running out of equations, Omega moves on to eliminate variables involved in inequa-
tions. Inequations are removed in several passes, with quick passes occurring first. Omega checks
for variables that are bounded only on one side (i.e., have no lower bounds or no upper bounds).
Such variables cannot affect the satisfiability of the system, so they can be removed, along with
all constraints on them — in this example, n, then k, and then i are removed in turn, producing
an empty conjunction, i.e. True.

To illustrate some of the other algorithms used for affine conjunctions, we consider what
would happen in this example if we knew n 6 1000 (perhaps the loop in Figure 1 is guarded by
the test if n <= 1000), i.e., (∃i, n, k : 0 6 i < n∧ 0 6 i + k < n∧ 0 < k ∧ n 6 1000). In the absence
of variables bounded on only one side, Omega examines groups of three inequalities to determine
if any two contradict a third or make it redundant. In our running example, i + k < n and 0 < k

make i < n redundant, and 0 6 i and 0 < k make 0 6 i + k redundant, reducing the query to (∃i,

n, k : 0 6 i∧ i + k <n∧ 0 <k ∧n6 1000).

Representation and Manipulation of Sets and Relations 7
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Omega then moves on to its most general technique: an adaptation of Fourier’s method of
variable elimination. Fourier’s method can be used to eliminate a variable v in a conjunction of
affine inequations, by replacing the set of inequations on v with the set of all possible combina-
tions of one upper and one lower bound on v — for example, replacing 0 6 i and i < n − k with
0 < n − k. The original conjunction has a rational solution if and only if the new one does; the
new system has one variable fewer, but may have many more inequations.

The Omega Library uses an extension of Fourier’s method that preserves the presence of
integer solutions. This process eliminates a variable by comparing the result of Fourier’s original
technique (which produces the “shadow”) with a variant Pugh calls a “dark shadow” — a lower-
dimensional conjunction has integer solutions only if the original did. The set of integer solutions
to the lower-dimensional system is the union of this dark shadow and the “splinter” solutions that
lie within the shadow but outside the dark shadow [Pug91a].

Omega repeatedly eliminates variables to produce a trivially-testable system with at most one
variable, possibly producing (∃n, k : 0 < n − k ∧ 0 < k ∧ n 6 1000) and then (∃n : 0 < n 6 1000) in
our running example. Since the query is now clearly satisfiable, the Omega Test concludes that
there must be some values of the constants n and k for which a dependence exists between some
iterations.

The example above, like most occurring during dependence analysis, does not illustrate the
use of splintering to project integer solutions. Figure 6 shows an example for the inequations

Figure 6. Shadow and Dark Shadow Metaphors for Integer Variable Elimination

10y 6 3x ∧ x 6 4y, which have integer solutions for x = 0, 4, 7, 8, 10, 11, 12 and x > 14. If Omega
were to eliminate y during satisfiability testing of 10y 6 3x ∧ x 6 4y ∧ x 6 100, it would find that
the dark shadow (146x 6 100) is satisfiable, and report True; if it were to eliminate y during sat-
isfiability testing of 10y 6 3x∧ x 6 4y ∧ x 6 12, it would find the rational shadow is satisfiable but
the dark shadow isn’t, and proceed to explore the splinters.

The number of inequations can grow exponentially in the number of variables eliminated by
Fourier’s method, and the need to compute splinters can only make matters worse. To control
this problem in practice, Omega first eliminates variables that do not introduce splintering (pro-
jecting away x instead of y in Figure 6, since the rational and dark shadows on the y axis are
identical), and from these non-splintering variables selects those that minimize the growth in the
number of inequations. These steps appear to control the growth of inequalities during depen-
dence analysis [Pug91a, PW94].

8 Section 3
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3.2 The Gist Operation

As noted in Section 2.1, we may wish to classify the flow dependence of Figure 1b as “condi-
tional”, since there are values of n and k for which no dependence exists and the iterations of the
loop can be run in parallel. A simple definition of conditional dependence could be implemented
by eliminating the loop index variables and identifying any non-tautology as conditional. For this
example, (∃i, i′ : i′= i + k ∧ 0 6 i < n∧ 0 6 i′< n∧ i < i′ ), or simply (0 < k < n), is not a tautology,
and this dependence would thus be marked as conditional.

Unfortunately, this simple definition would categorize as “conditional” almost any dependence
inside a loop with a symbolic upper bound, such as that in 1a — projecting away i and i′ leaves
(2 6 n), but of course when n < 2 there is no point in parallelizing the loop. To avoid such “false
positives”, the Omega Test defines as conditional any dependence that does not exist under some
conditions when we still wish to optimize the code, e.g., when a loop we wish to parallelize runs
multiple iterations.

This definition makes use of the Omega Library’s “gist” operation as well as projection. Infor-
mally, the “gist” of one set of constraints p (i.e., those in which a dependence exists) given some
other conditions q (i.e., those in which we care about the dependence) is the “interesting” infor-
mation about p given that q is true. To give precise semantics while allowing flexibility in the
processing of “interesting information”, gist is formally defined in terms of the values in the
sets/relations being constrained, not the collection of constraints giving the bounds:
“(gist p given q)” is any set/relation such that p ∧ q = (gist p given q) ∧ q. Figure 7 gives a graph-
ical illustration of the gist operation. Both examples illustrate, with a speckled region, the gist of
a vertically-striped region given a horizontally-striped region. Both cases illustrate the formal
definition of gist, as the speckled region overlaps the horizontally-striped region in the same way
the vertically-striped region does. The option on the left illustrates the “usual” behavior that is
produced by the algorithm described below: the gist is a superset of the original vertically-striped
region, with simple extensions of boundaries that defined that region. The possibility of results
like that on the right allows flexibility in the definition of “simple” that is important when
working with non-convex sets.

When p and q are conjunctions of affine (in)equations, the Omega Library computes
(gist p given q) by first using the redundancy detection steps described above to check the
(in)equations of p for redundancy with respect to p ∧ q (to check an (in)equation pi, it uses pi’s
hash key to determine if any other single (in)equation might make pi redundant; checks for vari-
ables that are not bounded in one direction that thus might show pi cannot be redundant; and (if
pi is an inequation) compares pi with pairs of inequations). If these “quick tests” fail to classify an
(in)equation as redundant or not, Omega optionally performs the definitive but potentially
expensive satisfiability test of a conjunction of all (in)equations from p ∧ q but with pi negated.
The conjunction of (in)equations of p that are not marked an redundant in p∧ q is then returned
as (gist p given q).

Returning to the codes of Figure 1, the flow dependence from Example 1b is marked as condi-
tional, as (gist (0 < k < n) given n > 1) = (0 < k < n). Example 1a’s dependence is not, since,
(gist (2 6 n) given n > 1) =True . More details on the gist operation, such as the algorithms used
when p and q are not both conjunctions of (in)equations, can be found in [PW92, Won95,
PW98].

3.3 Disjunctive Normal Form

Value-based dependence analysis, and certain cases of memory-based analysis (e.g., for programs
with conditional statements) may produce constraints that are not simple conjunctions of equa-
tions and inequations.

Representation and Manipulation of Sets and Relations 9
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Simple constraints for gist Complex yet legal constraints for gist

Figure 7. Examples of the Gist Operation: Usual and Unusual-but-legal Options

In Figure 3, the memory-based dependence from the write to A[i] to the read of A[i-1] is { [1,

t, 2, i, 1]→ [1, t′, 1, i′, 1]|i′− 1 = i∧ 0 6 t, t′< T ∧ 1 6 i, i′< N − 1∧ t < t′ }, or more concisely { [1, t,

2, i, 1]→ [1, t′, 1, i + 1, 1]|0 6 t < t′ < T ∧ 1 6 i 6 N − 3}. To describe the actual flow of values, the
Omega Test must rule out all cases in which the value written to A[i] is overwritten before the
read, i.e., any iteration { [1, t′′, 2, i′′, 1]} that writes to the same location (so i′′ = i) and occurs
between the original write and the read (so t < t′′ < t′) during a valid execution of the statement
(0 6 t′′< T ∧ 1 6 i′′<N − 1); in other words it must represent the dependence relation

{ [1, t, 2, i, 1]→ [1, t′, 1, i +1, 1]| 0 6 t < t′< T ∧ 1 6 i6 N − 3∧
¬(∃ t′′, i′′ : i′′= i∧ t < t′′< t′∧ 0 6 t′′<T ∧ 1 6 i′′<N − 1) }

Omega handles such formulae by converting them into disjunctive normal form, i.e. a list of
conjunctions of the form given in 3.1 whose disjunction is equivalent to the original formula.
Conversion to disjunctive normal form can increase the size of the formula exponentially; in prac-
tice, the explosion in formula size during dependence analysis is largely due to constraints that,
once negated, contradict the positive constraints (on the first line of our example formula). This
problem can be controlled by applying the rule a ∧ ¬b = a ∧ ¬(gist b given a). (Refer back to
Figure 7 for the intuition behind this rule — since the speckled region (gist b given a) must inter-
sect a in exactly the way b did, so must the complement of the speckled region ¬(gist b given a)
intersect a as ¬b does.) This use of gist turns the formula above into

{ [1, t, 2, i, 1]→ [1, t′, 1, i +1, 1]| 0 6 t < t′< T ∧ 1 6 i6 N − 3∧
¬(t 6 t′− 2) }.

The inequation t 6 t′− 2 can then be negated to produce t′ 6 t + 1 rather than the disjunction
of eight inequations that would have arisen without gist. In this context, Omega applies only
the “quick tests” for gist, as there is no point in the optional full computation here. Techniques
from Section 3.1 show our example formula is satisfiable and further simplify it to our final
description of the value-based flow dependence:

{ [1, t, 2, i, 1]→ [1, t+ 1, 1, i + 1, 1]| 0 6 t < T − 2∧ 1 6 i 6N − 3}.

The Omega Library can apply this conversion to disjunctive normal form recursively, allowing
it to operate on the full language of “Presburger Arithmetic”: arbitrary formulae involving con-
junction, disjunction, and negation of linear equations and inequations. Note that this logic has
super-exponential complexity [FR74], and queries lacking the properties discussed above may well
exhaust all available time or memory or produce integer overflow.
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The Omega Test actually performs value-based analysis in a slightly different way from that
described here, to “factor out” the effects of an overwrite on many different dependences, but the
need for, and implementation of, negated constraints follows the principles stated here. (See
[Won95, PW98] for this and other details, and [SW01] for more discussion of asymptotic com-
plexity).

3.4 Non-Affine Terms and Uninterpreted Function Symbols

The constraint-manipulation techniques of the previous paragraphs can be used for memory-
based, value-based, and conditional dependence analysis as long as the terms that are gathered
from the program are affine functions of the loop bounds and symbolic constants. When some
program term is not affine, many dependence tests simply report a maximally conservative
approximation (“some dependence of some sort might exist here”) without further analysis. The
Omega Test can use two abilities of the Omega Library to produce more precise results, in many
cases ruling out dependences despite the presence of non-affine terms.

The simplest approach to handling non-affine terms is to approximate the troublesome con-
straint but retain precise information about other constraints. The Omega Library provides a
special constraint UNKNOWN , to be used in place of any constraint that cannot be represented
exactly. Its presence indicates an approximation of some sort, but does not prevent Omega from
manipulating other constraints or producing an exact final result in some cases (note that
(UNKNOWN ∨True=True) and (UNKNOWN ∧False=False); however, since the two unrep-
resentable constraints may arise from unrelated terms in a program, ¬UNKNOWN does not
contradict UNKNOWN , and (UNKNOWN ∧¬UNKNOWN =UNKNOWN )).

For example, suppose Figure 1b updated A[i*k] rather than A[i+k] — the constraint i′ = i + k

must be replaced with i′ = i · k, but of course this is outside the domain of the Omega Library.
(Polynomial terms in dependence constraints were explored in [MP94] and by a number of
authors not related to the Omega Project, but never released in Omega.) Thus, the Omega Test
instead produces the relation {[i]→ [i′]|UNKNOWN ∧ 0 6 i <n∧ 0 6 i′< n∧ i < i′ }.

A more detailed description can be created by replacing the unrepresentable term rather than
the entire unrepresentable constraint . Omega records such a term as an uninterpreted function

symbol — a term that indicates a value that may depend on some parameters. For example, i · k
depends only on i and k, and can thus be represented as f(k, i) for some function f . While
UNKNOWN s cannot be combined in any informative way, two occurrences of the same function
can be combined in any context in which their parameters can be proved to be equal, e.g. (f(k,

i) > x∧ i = i′∧ f(k ′, i′) < x− 5∧ k ′= k) can be simplified to False. This principle holds even when
f is not a familiar mathematical function, most notably any expression e nested in loops i1, i2,
i3, ... in can be represented fe(i1, i2, i3, � .in). The use of function symbols can improve the preci-
sion of dependence analysis, and when this does not eliminate a dependence, the Omega Test
may be able to disprove it by including user assertions involving function symbols (if the pro-
grammer has provided them).

Presburger Arithmetic with uninterpreted function symbols is undecidable in general, and the
Omega Library currently restricts function parameters to be a prefix of the input or output tuple
of the relation. The Omega Test uses these tuples to represent the values of loop index variables
source and sink of a dependence, and thus must approximate in cases in which a function is
applied to some other values, in particular the values of loop indices at the time of an overwrite
that kills a value-based dependence (i.e., t′′ and i′′ in the relation in Section 3.3). Further detail
about the treatment of non-affine constraints in the Omega Test, including empirical studies, can
be found in [PW98].
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4 Current Status and Future Directions

The Omega Project’s constraint manipulation algorithms are described in the aforecited refer-
ences and the dissertations of Bill Pugh’s students. Algorithms with relatively stable implementa-
tions were generally released as the Omega Library, a freely available code base which can still be
found on the Internet (an open-source version containing updates from a number of Omega
Library users can be found at http://github.com/davewathaverford/the-omega-project/).
Notable omissions from the Omega Library code base include the code for iteration-space slicing,
implementations of algorithms for polynomial constraints, some “corner cases” of the full Pres-
burger satisfiability-testing algorithm, and any way of handling cases in which the core implemen-
tation of integer variable elimination produces extremely large coefficients. The Omega Library is
generally distributed with the Omega Calculator, a text-based interface that allows convenient
access to the operations of the library.

The constraint-based/polyhedral approach that was pioneered by Bill Pugh’s Omega Project
and by Paul Feautrier and his colleagues in France remains central to a number of ongoing com-
piler research projects. It is also a valuable tool in industrial compilers such as that produced by
Reservoir Labs, Inc.. For a discussion of the state-of-the-art before this work, see Michael
Wolfe’s “High-Performance Compilers for Parallel Computing” [Wol96]; additional discussion of
the instance-wise approach to reasoning about program transformations can be found in Jean-
Francois Collard’s “Reasoning About Program Transformations: Imperative Programming and
Flow of Data” [Col02].

A number of constraint-manipulation program analysis/transformation techniques and associ-
ated libraries have been developed since the release of the Omega Library. These typically con-
tain more modern algorithms for a number of advanced functions of Omega, such as code genera-
tion, or more general implementations of underlying constraint algorithms, for example avoiding
Omega’s use of limited-range integers. As of the writing of this article, most do not support all of
the techniques described in this article, notably

• algorithms that are (at least in principle) exact for integer variables;

• algorithms for the full domain of Presburger Arithmetic;

• separation of dependence analysis and transformation from the core constraint system via

− an API allowing high-level relation/set operations and low-level operations and

− a text-based interface to allow easy exploration of the abilities of the system;

• special terms for communicating with the core constraint system about information not in
the its primary domain, e.g. function symbols;

• tagging of approximations to distinguish them from exact results; and

• iteration space slicing (never released with Omega).

12 Section 4
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